Scientific Output

Over 10.000 scientific papers have been published by members of the Materials Chain since the foundation of the University Alliance Ruhr in 2010. This tremendous output is proof of the excellent environment the Ruhr Area provides for research in the field of materials science and technology.

Below, you can either scroll through the complete list of our annually published material, or search for a specific author or term via the free text search to get to know our research strengths. You can also review the publication record of every Materials Chain member via his or her personal member’s page.

Free text search:


  • 2023 • 269 Catalytic effects of molybdate and chromate–molybdate films deposited on platinum for efficient hydrogen evolution
    Diaz-Morales, O. and Lindberg, A. and Smulders, V. and Anil, A. and Simic, N. and Wildlock, M. and Alvarez, G.S. and Mul, G. and Mei, B. and Cornell, A.
    Journal of Chemical Technology and Biotechnology 98 1269-1278 (2023)
    BACKGROUND: Sodium chlorate (NaClO3) is extensively used in the paper industry, but its production uses strictly regulated highly toxic Na2Cr2O7 to reach high hydrogen evolution reaction (HER) Faradaic efficiencies. It is therefore important to find alternatives either to replace Na2Cr2O7 or reduce its concentration. RESULTS: The Na2Cr2O7 concentration can be significantly reduced by using Na2MoO4 as an electrolyte co-additive. Na2MoO4 in the millimolar range shifts the platinum cathode potential to less negative values due to an activating effect of cathodically deposited Mo species. It also acts as a stabilizer of the electrodeposited chromium hydroxide but has a minor effect on the HER Faradaic efficiency. X-ray photoelectron spectroscopy (XPS) results show cathodic deposition of molybdenum of different oxidation states, depending on deposition conditions. Once Na2Cr2O7 was present, molybdenum was not detected by XPS, as it is likely that only trace levels were deposited. Using electrochemical measurements and mass spectrometry we quantitatively monitored H2 and O2 production rates. The results indicate that 3 μmol L−1 Na2Cr2O7 (contrary to current industrial 10–30 mmol L−1) is sufficient to enhance the HER Faradaic efficiency on platinum by 15%, and by co-adding 10 mmol L−1 Na2MoO4 the cathode is activated while avoiding detrimental O2 generation from chemical and electrochemical reactions. Higher concentrations of Na2MoO4 led to increased oxygen production. CONCLUSION: Careful tuning of the molybdate concentration can enhance performance of the chlorate process using chromate in the micromolar range. These insights could be also exploited in the efficient hydrogen generation by photocatalytic water splitting and in the remediation of industrial wastewater. © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI). © 2023 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
    view abstractdoi: 10.1002/jctb.7345
  • 2023 • 268 High-Throughput Exploration of Structural and Electrochemical Properties of the High-Entropy Nitride System (Ti–Co–Mo–Ta–W)N
    Suhr, Ellen and Krysiak, Olga A. and Strotkötter, Valerie and Thelen, Felix and Schuhmann, Wolfgang and Ludwig, Al
    Advanced Engineering Materials 25 (2023)
    High-entropy nitrides are largely unexplored materials with high potential to show good mechanical properties, high stability against chemicals, but also promising electrocatalytic properties. The latter is due to their good electrical conductivity compared to (high-entropy) oxides. The high-entropy nitride system (Ti–Co–Mo–Ta–W)N is chosen for investigation based on the idea to combine binary and ternary nitrides, which show good water-splitting activities. Thin-film materials libraries with continuous composition spreads are deposited using reactive cosputter deposition at 300 and 500 °C. X-Ray diffraction results show that the films consist of a single-phase solid solution in NaCl-type structure. The surface morphology is examined using scanning electron and atomic force microscopy. (Ti–Co–Mo–Ta–W)N films show low resistivity values in the range from 1.72 to 5.2 μΩ cm. Their oxygen evolution reaction activity is measured using a scanning droplet cell, with a maximum current density of 1.78 mA cm−2 at 1700 mV versus reversible hydrogen electrode. The results indicate that stability is a challenge for high-entropy nitrides, at least for their use as oxygen-related electrocatalytic reactions. © 2023 The Authors. Advanced Engineering Materials published by Wiley-VCH GmbH.
    view abstractdoi: 10.1002/adem.202300550
  • 2022 • 267 Molecular dynamics study on the role of Ar ions in the sputter deposition of Al thin films
    Gergs, T. and Mussenbrock, T. and Trieschmann, J.
    Journal of Applied Physics 132 (2022)
    Compressive stresses in sputter deposited thin films are generally assumed to be caused by forward sputtered (peened) built-in particles and entrapped working gas atoms. While the former are assumed to be predominant, the effect of the latter on interaction dynamics and thin film properties is scarcely clarified (concurrent or causative). The overlay of the ion bombardment induced processes renders an isolation of their contribution impracticable. This issue is addressed by two molecular dynamics case studies considering the sputter deposition of Al thin films in Ar working gas. First, Ar atoms are fully retained. Second, they are artificially neglected, as implanted Ar atoms are assumed to outgas anyhow and not alter the ongoing dynamics significantly. Both case studies share common particle dose impinging Al(001) surfaces. Ion energies from 3 to 300 eV and Al / Ar + flux ratios from 0 to 1 are considered. The surface interactions are simulated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations and characterized in terms of mass density, Ar concentration, biaxial stress, shear stress, ring statistical connectivity profile, Ar gas porosity, Al vacancy density, and root-mean-squared roughness. Implanted Ar atoms are found to form subnanometer sized eventually outgassing clusters for ion energies exceeding 100 eV. They fundamentally govern a variety of surface processes (e.g., forward sputtering/peening) and surface properties (e.g., compressive stresses) in the considered operating regime. © 2022 Author(s).
    view abstractdoi: 10.1063/5.0098040
  • 2021 • 266 Additive manufacturing of PA12 carbon nanotube composites with a novel laser polymer deposition process
    Wencke, Y.L. and Kutlu, Y. and Seefeldt, M. and Esen, C. and Ostendorf, A. and Luinstra, G.A.
    Journal of Applied Polymer Science 138 (2021)
    The facile manufacture of PA12 MWCNT/silica (50/50 by weight) nanocomposite powders through a high energy mixing process is presented, which are useful to generate 3D objects by a novel Laser Polymer Deposition (LPD) process. The mixing as well as the LPD process led to no discernible changes in the material properties (DSC, SEM, LD) of the core-shell nanocomposites, enabling the recycling of unconverted powder. The built parts yield ultimate tensile stresses and Young's modulus at 10%–20% of the bulk material. Partially unmolten particles and voids were identified as the main mechanical failure mechanism in the built parts. The mechanical properties are better with low additive content (Young's modulus: 89.8 ± 5.4 MPa; UTS: 12.9 ± 5.3 MPa with 0.25 wt% additives). Electronic conductivity up to the region of moderate conductivity could be achieved by multiwalled carbon nanotube (MWCNT) network formation (8 × 10−4 S cm−1 at 1.25 wt% of additives). A variant of the processing strategy revealed that a higher mechanical strength can be achieved by a laser induced remelting of the traces following their initial construction. © 2020 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals LLC.
    view abstractdoi: 10.1002/app.50395
  • 2021 • 265 Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk
    Choudhary, R. and Venkatraman, S.K. and Bulygina, I. and Senatov, F. and Kaloshkin, S. and Anisimova, N. and Kiselevskiy, M. and Knyazeva, M. and Kukui, D. and Walther, F. and Swamiappan, S.
    Materials Science and Engineering C 118 (2021)
    The current investigation aims to replace the synthetic starting materials with biowaste to synthesize and explore three different silicate bioceramics. Pure silica from rice husk was extracted by decomposition of rice husk in muffle furnace followed by alkali treatment and acid precipitation. Raw eggshell and extracted silica were utilized for the preparation of wollastonite, diopside and forsterite by the solid-state method. The TG-DSC analysis shows that the crystallization temperature of wollastonite, diopside and forsterite was found to be 883 °C, 870 °C and 980 °C, respectively. The phase purity of wollastonite was attained at 1100 °C whereas diopside and forsterite were composed of secondary phases even after calcination at 1250 °C and 1300 °C respectively. All three materials behaved differently when exposed to the physiological environment, as wollastonite exhibited remarkable apatite deposition within 3 days whereas a distinct apatite phase was noticed on the surface of diopside after 2 weeks and forsterite shows the formation of apatite phase after five weeks of immersion. The rapid dissolution of Mg2+ ion from forsterite lowered the leaching of silicate ions into the simulated body fluid leading to poor apatite deposition over its surface. Chemical composition was found to plays a key role in the biomineralization ability of these bioceramics. Hemolysis and Lactate Dehydrogenase (LDH) release assays were performed to evaluate the hemocompatibility of silicate ceramics cultured at different concentrations (62.5, 125, and 250 μg/mL) with red blood cells and mononuclear leucocytes (MLs) of mice. The hemolytic activity of all the tested bioceramics was insignificant (less than 1%). The interaction between diopside and mouse multipotent mesenchymal stromal cells (MMSCs) caused a negligible increase in the number of apoptosis-associated Annexin V-binding cells whereas forsterite and wollastonite induced an increase in the number of the apoptotic cells only at the concentration of 250 μg/mL. The LDH assay did not show statistically significant changes in the proliferation of MMSCs after treatment with the bioceramics at the tested concentrations when compared to control (p > 0.05). This finding showed that the death of a part of cells during the first 24 h of incubation did not prevent the proliferation of MMSCs incubated with diopside, forsterite and wollastonite for 72 h. © 2020 Elsevier B.V.
    view abstractdoi: 10.1016/j.msec.2020.111456
  • 2021 • 264 Coating of cochlear implant electrodes with bioactive DNA-loaded calcium phosphate nanoparticles for the local transfection of stimulatory proteins
    Wey, K. and Schirrmann, R. and Diesing, D. and Lang, S. and Brandau, S. and Hansen, S. and Epple, M.
    Biomaterials 276 (2021)
    Calcium phosphate nanoparticles were loaded with nucleic acids to enhance the on-growth of tissue to a cochlear implant electrode. The nanoparticle deposition on a metallic electrode surface is possible by electrophoretic deposition (EPD) or layer-by-layer deposition (LbL). Impedance spectroscopy showed that the coating layer did not interrupt the electrical conductance at physiological frequencies and beyond (1–40,000 Hz). The transfection was demonstrated with the model cell lines HeLa and 3T3 as well as with primary explanted spiral ganglion neurons (rat) with the model protein enhanced green fluorescent protein (EGFP). The expression of the functional protein brain-derived neurotrophic factor (BDNF) was also shown. Thus, a coating of inner-ear cochlear implant electrodes with nanoparticles that carry nucleic acids will enhance the ongrowth of spiral ganglion cell axons for an improved transmission of electrical pulses. © 2021 Elsevier Ltd
    view abstractdoi: 10.1016/j.biomaterials.2021.121009
  • 2021 • 263 Combinatorial exploration of B2/L21 precipitation strengthened AlCrFeNiTi compositionally complex alloys
    Wolff-Goodrich, S. and Marshal, A. and Pradeep, K.G. and Dehm, G. and Schneider, J.M. and Liebscher, C.H.
    Journal of Alloys and Compounds 853 (2021)
    Using both novel high-throughput screening via combinatorial thin film deposition and conventional bulk alloy synthesis techniques, a large region of the AlCrFeNiTi composition space has been probed for alloys that could serve as low cost alternatives to nickel-base superalloys for medium-to-high temperature structural applications. Phase formation trends in this highly complex alloying system have been determined using characterisation techniques that span multiple length scales—from bulk X-ray diffraction and differential scanning calorimetry to atomically resolved scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. A large region of stability for both disordered A2 and ordered B2/L21 type phases is observed, with several compositions exhibiting fine-scaled precipitation structures of these two phases. For alloys with ≥20 at.% Al, the precipitation structure was further refined to a nano-scale lamellar arrangement of A2 and B2/L21 phases. Formation of C14 Laves phase, especially for compositions with >10 at.% Ti, has consistently been observed. We include a screening of the mechanical properties based on nanoindentation and macroscopic hardness test data correlated with scanning electron microscope (SEM) observations of the hardness indents. The phase formation trends observed by both combinatorial thin film deposition and bulk alloy synthesis are discussed in detail for samples in the as-deposited and as-cast conditions, respectively. © 2020 Elsevier Ltd
    view abstractdoi: 10.1016/j.jallcom.2020.156111
  • 2021 • 262 Comparing Direct and Pulsed-Direct Current Electrophoretic Deposition on Neural Electrodes: Deposition Mechanism and Functional Influence
    Ramesh, V. and Rehbock, C. and Giera, B. and Karnes, J.J. and Forien, J.-B. and Angelov, S.D. and Schwabe, K. and Krauss, J.K. and Barcikowski, S.
    Langmuir 37 9724-9734 (2021)
    Electrophoretic deposition (EPD) of platinum nanoparticles (PtNPs) on platinum-iridium (Pt-Ir) neural electrode surfaces is a promising strategy to tune the impedance of electrodes implanted for deep brain stimulation in various neurological disorders such as advanced Parkinson's disease and dystonia. However, previous results are contradicting as impedance reduction was observed on flat samples while in three-dimensional (3D) structures, an increase in impedance was observed. Hence, defined correlations between coating properties and impedance are to date not fully understood. In this work, the influence of direct current (DC) and pulsed-DC electric fields on NP deposition is systematically compared and clear correlations between surface coating homogeneity and in vitro impedance are established. The ligand-free NPs were synthesized via pulsed laser processing in liquid, yielding monomodal particle size distributions, verified by analytical disk centrifugation (ADC). Deposits formed were quantified by UV-vis supernatant analysis and further characterized by scanning electron microscopy (SEM) with semiautomated interparticle distance analyses. Our findings reveal that pulsed-DC electric fields yield more ordered surface coatings with a lower abundance of particle assemblates, while DC fields produce coatings with more pronounced aggregation. Impedance measurements further highlight that impedance of the corresponding electrodes is significantly reduced in the case of more ordered coatings realized by pulsed-DC depositions. We attribute this phenomenon to the higher active surface area of the adsorbed NPs in homogeneous coatings and the reduced particle-electrode electrical contact in NP assemblates. These results provide insight for the efficient EPD of bare metal NPs on micron-sized surfaces for biomedical applications in neuroscience and correlate coating homogeneity with in vitro functionality. © 2021 American Chemical Society.
    view abstractdoi: 10.1021/acs.langmuir.1c01081
  • 2021 • 261 CrOx-Mediated Performance Enhancement of Ni/NiO-Mg:SrTiO3in Photocatalytic Water Splitting
    Han, K. and Haiber, D.M. and Knöppel, J. and Lievens, C. and Cherevko, S. and Crozier, P. and Mul, G. and Mei, B.
    ACS Catalysis 11 11049-11058 (2021)
    By photodeposition of CrOxon SrTiO3-based semiconductors doped with aliovalent Mg(II) and functionalized with Ni/NiOxcatalytic nanoparticles (economically significantly more viable than commonly used Rh catalysts), an increase in apparent quantum yield (AQYs) from ∼10 to 26% in overall water splitting was obtained. More importantly, deposition of CrOxalso significantly enhances the stability of Ni/NiO nanoparticles in the production of hydrogen, allowing sustained operation, even in intermittent cycles of illumination.In situelemental analysis of the water constituents during or after photocatalysis by inductively coupled plasma mass spectrometry/optical emission spectrometry shows that after CrOxdeposition, dissolution of Ni ions from Ni/NiOx-Mg:SrTiO3is significantly suppressed, in agreement with the stabilizing effect observed, when both Mg dopant and CrOxare present. State-of-the-art electron microscopy and energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS) analyses demonstrate that upon preparation, CrOxis photodeposited in the vicinity of several, but not all, Ni/NiOxparticles. This implies the formation of a Ni-Cr mixed metal oxide, which is highly effective in water reduction. Inhomogeneities in the interfacial contact, evident from differences in contact angles between Ni/NiOxparticles and the Mg:SrTiO3semiconductor, likely affect the probability of reduction of Cr(VI) species during synthesis by photodeposition, explaining the observed inhomogeneity in the spatial CrOxdistribution. Furthermore, by comparison with undoped SrTiO3, Mg-doping appears essential to provide such favorable interfacial contact and to establish the beneficial effect of CrOx. This study suggests that the performance of semiconductors can be significantly improved if inhomogeneities in interfacial contact between semiconductors and highly effective catalytic nanoparticles can be resolved by (surface) doping and improved synthesis protocols. © 2021 The Authors. Published by American Chemical Society
    view abstractdoi: 10.1021/acscatal.1c03104
  • 2021 • 260 Direct generation of 3D structures by laser polymer deposition
    Thiele, M. and Kutlu, Y. and Dobbelstein, H. and Petermann, M. and Esen, C. and Ostendorf, A.
    Journal of Laser Applications 33 (2021)
    Additive manufacturing with polymers is typically performed using techniques such as stereolithography, selective laser sintering (SLS), or fused deposition modeling. SLS of unmodified powders with CO2 lasers represents the state of the art in powder-based polymer additive manufacturing. In the presented work, thermoplastic polyurethane was successfully processed for the first time with a powder feed technique, which is similar to the well-known laser metal deposition. The powder material was doped with carbon black in order to increase the absorptivity of the powder material for laser radiation in the near-infrared range. Various geometries were produced using a standard laser cladding setup with a modified powder feeding system and an Nd:YAG laser. The powder material and the generated structures were characterized by scanning electron microscopy. Structural properties, e.g., porosity, were controlled by different fabrication strategies and process parameters. Furthermore, hybrid structures consisting of metal and polymer parts were successfully produced in the same experimental setup by using two different powder feeders. © 2021 Author(s).
    view abstractdoi: 10.2351/7.0000166
  • 2021 • 259 Effect of synthesis temperature on the phase formation of NiTiAlFeCr compositionally complex alloy thin films
    Marshal, A. and Singh, P. and Music, D. and Wolff-Goodrich, S. and Evertz, S. and Schökel, A. and Johnson, D.D. and Dehm, G. and Liebscher, C.H. and Schneider, J.M.
    Journal of Alloys and Compounds 854 (2021)
    The synthesis temperature dependent phase formation of Ni10Ti10Al25Fe35Cr20 thin films is compared to a bulk processed sample of identical composition. The as-cast alloy exhibits a dual-phase microstructure which is composed of a disordered BCC phase and AlNiTi-based B2- and/or L21-ordered phase(s). Formation of the BCC phase as well as an ordered AlNi-based B2 phase is observed for a thin film synthesised at 500 °C (ratio of synthesis temperature of thin film to melting temperature of bulk alloy: T/Tm = 0.49), which is attributed to both surface and bulk diffusion mediated growth. Post deposition annealing at 900 °C (T/Tm = 0.75) of a thin film deposited without intentional heating results in the formation of NiAlTi-based B2 and/or L21-phase(s) similar to the bulk sample, which is attributed to bulk diffusion. Depositions conducted at room temperature without intentional substrate heating (T/Tm = 0.20) resulted in the formation of an X-ray amorphous phase, while a substrate temperature increase to 175 °C (T/Tm = 0.28) causes the formation of a BCC phase. Atom probe tomography of the thin films deposited without intentional substrate heating and at 175 °C indicates the formation of ∼5 nm and ∼10 nm FeAl-rich domains, respectively. This can be rationalized based on the activation energy for surface diffusion, as Ti and Ni exhibt 2.5 to 4 times larger activation energy barriers than Al, Fe and Cr. It is evident from the homologous temperature that the phase formation observed at 500 °C (T/Tm = 0.49) is a result of both surface and bulk diffusion. As the temperature is reduced, the formation of FeAl-rich domains can be understood based on the differences in activation energy for surface diffusion and is consistent with kinetically limited thin film growth. © 2020 Elsevier B.V.
    view abstractdoi: 10.1016/j.jallcom.2020.155178
  • 2021 • 258 Studying Fluid Characteristics Atop Surface Patterned Membranes via Particle Image Velocimetry
    Denizer, D. and ElSherbiny, I.A.M. and Ulbricht, M. and Panglisch, S.
    Chemie-Ingenieur-Technik (2021)
    Surface patterning is a recent promising approach to promote performance of pressure-driven membranes in water treatment and desalination. Nevertheless, knowledge about foulant deposition mechanisms, especially at early stage of filtration, is still lacking. The applicability of particle imaging velocimetry to study fluid characteristics atop surface patterned thin-film composite membranes was investigated at different operating conditions. This work is an important first step toward reliable understanding of the impacts of topographical membrane surface modification on hydrodynamic conditions and foulant deposition mechanisms. © 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH
    view abstractdoi: 10.1002/cite.202100043
  • 2020 • 257 Additive-free spin coating of tin oxide thin films: Synthesis, characterization and evaluation of tin β-ketoiminates as a new precursor class for solution deposition processes
    Huster, N. and Zanders, D. and Karle, S. and Rogalla, D. and Devi, A.
    Dalton Transactions 49 10755-10764 (2020)
    The fabrication of SnOx in thin film form via chemical solution deposition (CSD) processes is favored over vacuum based techniques as it is cost effective and simpler. The precursor employed plays a central role in defining the process conditions for CSD. Particularly for processing SnO2 layers that are appealing for sensor or electronic applications, there are limited precursors available for CSD. Thus the focus of this work was to develop metalorganic precursors for tin, based on the ketoiminate ligand class. By systematic molecular engineering of the ligand periphery, a series of new homoleptic Sn(ii) β-ketoiminate complexes was synthesized, namely bis[4-(2-methoxyethylimino)-3-pentanonato] tin, [Sn(MEKI)2] (1), bis[4-(2-ethoxyethylimino)-2-pentanonato] tin, [Sn(EEKI)2] (2), bis[4-(3-methoxypropylimino)-2-pentanonato] tin, [Sn(MPKI)2] (3), bis[4-(3-ethoxypropylimino)-2-pentanonato] tin, [Sn(EPKI)2] (4) and bis[4-(3-isopropoxypropylimino)-2-pentanonato] tin, [Sn(iPPKI)2] (5). All these N-side-chain ether functionalized compounds were analyzed by nuclear magnetic resonance (NMR) spectroscopy, electron impact mass spectrometry (EI-MS), elemental analysis (EA) and thermogravimetric analysis (TGA). The solid state molecular structure of [Sn(MPKI)2] (3) was eludicated by means of single crystal X-ray diffraction (SCXRD). Interestingly, this class of compounds features excellent solubility and stability in common organic solvents alongside good reactivity towards H2O and low decomposition temperatures, thus fulfilling the desired requirements for CSD of tin oxides. With compound 3 as a representative example, we have demonstrated the possibility to directly deposit SnOx layers via hydrolysis upon exposure to air followed by heat treatment under oxygen at moderate temperatures and most importantly without the need for any additive that is generally used in CSD. A range of complementary analytical methods were employed, namely X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), nuclear reaction analysis (NRA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to analyse the structure, morphology and composition of the SnOx layers. This journal is © The Royal Society of Chemistry.
    view abstractdoi: 10.1039/d0dt01463j
  • 2020 • 256 Assembly, Stability, and Electrical Properties of Sparse Crystalline Silicon Nanoparticle Networks Applied to Solution-Processed Field-Effect Transistors
    Chryssikos, D. and Wiesinger, M. and Bienek, O. and Wiggers, H. and Stutzmann, M. and Cattani-Scholz, A. and Pereira, R.N.
    ACS Applied Electronic Materials 2 692-700 (2020)
    Thin films of crystalline silicon nanoparticles (Si NPs) processed from liquid dispersions of NPs (NP inks) using printing-type deposition methods are currently being intensively investigated for the development of electronic and optoelectronic nanotechnologies. Various (opto)electronic applications have already been demonstrated based on these materials, but so far, devices exhibit modest performance because of relatively low electrical conductivity and charge carrier mobility. In this work, we aim at unveiling the major factors affecting the long-range transport of charges in Si NP thin films. For this, we monitor the electrical properties of thin-film field effect transistors (FETs) as the active channel of the devices is gradually filled with Si NPs. To produce these FET devices featuring stable, sparse Si NP networks within the active channel, we developed a fabrication protocol based on NP deposition by device substrate immersion in a NP ink, made of Si NPs and chlorobenzene, followed by annealing and ultrasonication. We found that both the electrical conductivity and the charge carrier mobility of the FETs increase extremely rapidly as the device channel coverage with NPs increases. Thus, the NP network corresponds effectively to an inhomogeneous blend of conducting and insulating Si NPs, with the most efficient charge percolation paths involving only a fraction of the NPs. We discuss the factors that may lead to this behavior, in view of developing Si NP thin films with competitive charge transport characteristics. Copyright © 2020 American Chemical Society.
    view abstractdoi: 10.1021/acsaelm.9b00786
  • 2020 • 255 Cold Gas Spraying of Nickel-Titanium Coatings for Protection Against Cavitation
    Mauer, G. and Rauwald, K.-H. and Sohn, Y.J. and Weirich, T.E.
    Journal of Thermal Spray Technology (2020)
    Cavitation erosion is a sever wear mechanism that takes place in hydrodynamic systems. Examples are turbine vanes of hydropower plants or components of valves and pumps in hydraulic systems. Nickel-titanium shape memory alloys (NiTi) are attractive materials for cavitation-resistant coatings because of their pronounced intrinsic damping mitigating cavitation-induced erosion. In this work, NiTi coatings were produced by cold gas spraying. The phase transformation behaviors of the powder feedstock and the as-sprayed coatings were investigated. Regarding the obtained transformation temperatures, the measured substrate temperatures during spraying rule out that either the shape memory effect or the pseudoelasticity of NiTi could affect the deposition efficiency under the applied conditions of cold gas spraying. Another potential effect is stress-induced amorphization which could occur at the particle–substrate interfaces and impair particle bonding by stress relaxation. Moreover, also oxide formation can be significant. Thus, the presence of amorphous phases and oxides in the near-surface zone of particles bounced off after impact was investigated. Oxidation could be confirmed, but no indication of amorphous phase was found. Besides, also the evolution of local microstrains implies that the substrate temperatures affect the deposition efficiency. These temperatures were significantly influenced by the spray gun travel speed. © 2020, The Author(s).
    view abstractdoi: 10.1007/s11666-020-01139-x
  • 2020 • 254 Comparative study of the residual stress development in HMDSN-based organosilicon and silicon oxide coatings
    Jaritz, M. and Hopmann, C. and Wilski, S. and Kleines, L. and Banko, L. and Grochla, D. and Ludwig, Al. and Dahlmann, R.
    Journal of Physics D: Applied Physics 53 (2020)
    To investigate the stress formation mechanisms in thin plasma polymers, a comparative study of organosilicon (SiNOCH) and silicon oxide (SiOx) coatings in dependence of power input for deposition was conducted. Both coating types were produced in a low-pressure (15 Pa) microwave excited hexamethyldilisazane (HMDSN) plasma. Residual stress values were obtained using a high-throughput, time resolved and in-situ measurement method, including a CCD-camera, a line laser and micro-machined cantilever sensor chips. Both plasma polymer types were shown to form residual stresses with opposite signs. The stress evolution in the coatings revealed a strong dependency on the variation of power input for deposition. The SiOx coating exhibits mostly compressive stresses. Higher power inputs constitute higher ion momentums as well as a higher degree of fragmentation of the monomer. The SiOx coatings were deposited with a high oxygen flow and with a higher average energy of the plasma for all investigated parameter sets than the SiNOCH coating. Therefore, it is conceivable that ion peening is mostly responsible for the compressive stress formation in the SiOx coatings. In contrast to the SiOx coating, the SiNOCH coating can be applied without residual stress. For higher excitation powers, tensile stresses are predominant, most likely due to attractive forces between island or column boundaries and crosslinking. © 2020 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6463/ab8ceb
  • 2020 • 253 Control of thermally stable core-shell nano-precipitates in additively manufactured Al-Sc-Zr alloys
    Kürnsteiner, P. and Bajaj, P. and Gupta, A. and Wilms, M.B. and Weisheit, A. and Li, X. and Leinenbach, C. and Gault, B. and Jägle, E.A. and Raabe, D.
    Additive Manufacturing 32 (2020)
    Laser Additive Manufacturing (LAM) of light metals such as high-strength Al-based alloys offers tremendous potential for e.g. weight reduction and associated reduced fuel consumptions for the transportation industry. Typically, commercial Sc-containing alloys, such as Scalmalloy®, rely on precipitation hardening to increase their strength. Conventional processing involves controlled ageing during which ordered and coherent Al3Sc precipitates form from a Sc-supersaturated solid solution. Here we show how the intrinsic heat treatment (IHT) of directed energy deposition (DED) can be used to trigger the precipitation of Al3Sc already during the LAM process. High number densities of 1023 nano-precipitates per m3 can be realized through solid-state phase transformation from the supersaturated Al-Sc matrix that results from the fast cooling rate in LAM. Yet, the IHT causes precipitates to coarsen, hence reducing their strengthening effect. We implement alternative solidification conditions to exploit the IHT to form a Zr-rich shell around the Al3Sc precipitates that prevents coarsening. Our approach is applicable to a wide range of precipitation-hardened alloys to trigger in-situ precipitation during LAM. © 2019 Elsevier B.V.
    view abstractdoi: 10.1016/j.addma.2019.100910
  • 2020 • 252 Directed Energy Deposition of PA12 carbon nanotube composite powder using a fiber laser
    Kutlu, Y. and Wencke, Y.L. and Luinstra, G.A. and Esen, C. and Ostendorf, A.
    Procedia CIRP 94 128-133 (2020)
    Directed Energy Deposition (DED) an AM-technology that is widely known for its applications with metals was adapted for use with thermoplastics. A drop-in approach was used based on a DED setup for metal powders consisting of a Yb fiber laser with a wavelength of 1075 nm and a powder feed from a coaxial powder nozzle. The possibility of manufacturing items with simple geometries from a polyamide 12 multi-walled carbon nanotube composite starting material is described as a proof of concept. Tensile properties of samples are reported for measurements perpendicular and parallel to the generating direction, showing still a low strength compared to Bulk PA12 or SLS sintered PA12 specimens. © 2020 The Authors. Published by Elsevier B.V.
    view abstractdoi: 10.1016/j.procir.2020.09.025
  • 2020 • 251 Distortion and Dilution Behavior for Laser Metal Deposition onto Thin Sheet Metals
    Tebaay, L.M. and Hahn, M. and Tekkaya, A.E.
    International Journal of Precision Engineering and Manufacturing - Green Technology 7 625-634 (2020)
    The combination of additive manufacturing and incremental sheet forming offers great flexibility in the manufacture of function-integrated parts. In this study, both processes were carried out by the same CNC machine. This offers the possibility to manufacture large-scale lightweight parts with smaller additive parts on it in one machine and clamping device. Additionally, the process combination can lead to a reduced energy and material consumption for small batch sizes. DC01 sheets are used as a substrate with two different initial conditions. The first condition is as delivered steel sheet and the second is an incrementally formed with a thickness of 0.5 mm. The additive manufacturing was conducted by laser metal deposition (LMD). The powder material is a stainless steel 316 L. A segmentation of the cladding surface was applied and the path strategy of the laser movement was varied simultaneously to analyse the warpage of the thin substrate. It is shown that there is a dependency between the build-up strategies and the melt pool temperature, the thermal distortion, the dilution and the size of the cladding area. A segmentation of the working surface causes a lower melt pool temperature and thermal distortion. The lower melt pool temperature also generates a reduced dilution zone. © 2020, Korean Society for Precision Engineering.
    view abstractdoi: 10.1007/s40684-020-00203-9
  • 2020 • 250 Effect of nanoparticle additivation on the microstructure and microhardness of oxide dispersion strengthened steels produced by laser powder bed fusion and directed energy deposition
    Doñate-Buendia, C. and Streubel, R. and Kürnsteiner, P. and Wilms, M.B. and Stern, F. and Tenkamp, J. and Bruder, E. and Barcikowski, S. and Gault, B. and Durst, K. and Schleifenbaum, J.H. and Walther, F. and Gökce, B.
    Procedia CIRP 94 41-45 (2020)
    In this contribution, the effect of nanoparticle additivation on the microstructure and microhardness of oxide dispersion strengthened steels (ODS) manufactured by laser powder bed fusion (L-PBF) and directed energy deposition (DED) additive manufacturing (AM) is studied. The powder composites are made of micrometer-sized iron-chromium-alloy based powder which are homogenously decorated with Y2O3 nanoparticles synthesized by pulsed laser fragmentation in water. Consolidated by L-PBF and DED, an enhanced microhardness of the AM-built ODS sample is found. This increase is related to the significant microstructural differences found between the differently processed samples. © 2020 The Authors. Published by Elsevier B.V.
    view abstractdoi: 10.1016/j.procir.2020.09.009
  • 2020 • 249 Effects of friction surfacing on the characteristics of consumable rods of Ti-6Al-4V
    Do Vale, N. and Fitseva, V. and Hanke, S. and Filho, S.L.U. and Dos Santos, J.F.
    Materials Research 22 (2020)
    Friction surfacing (FS) is a coating technique applied mainly in corrosion protection and repair of components. The study addresses the effects of deposition and rotational speeds on the rods characteristics and process efficiency for the deposition of Ti-6Al-4V on self-mating substrates by FS. The consumption rate was 1.8 mm/s, deposition speeds of 8, 16 and 24 mm/s and rotational speeds of 2000, 3000 and 4000 rpm. It was shown that the flash forms primarily at the rod, ascending around the tip and leaving the coating without flash. The higher deposition speeds led to a decrease in rod thickness and diameter. For higher rotational speeds, an increase in diameter and decrease in thickness is observed for the flash on the rod. Experiments have shown that the rotational and deposition speeds have a decisive influence on the flash formation. Its microstructure changes due to the welding process and a change in hardness can be observed. © 2019 Universidade Federal de Sao Carlos. All rights reserved.
    view abstractdoi: 10.1590/1980-5373-MR-2018-0888
  • 2020 • 248 High Layer Uniformity of Two-Dimensional Materials Demonstrated Surprisingly from Broad Features in Surface Electron Diffraction
    Chen, S. and Horn-von Hoegen, M. and Thiel, P.A. and Kaminski, A. and Schrunk, B. and Speliotis, T. and Conrad, E.H. and Tringides, M.C.
    Journal of Physical Chemistry Letters 11 8937-8943 (2020)
    Paradoxically, a very broad diffraction background, named the bell-shaped-component (BSC), has been established as a feature of graphene growth. Recent diffraction studies as a function of electron energy have shown that the BSC is not related to scattering interference. Here, additional experiments are carried out as a function of temperature over the range in which single-layer graphene (SLG) grows. Quantitative fitting of the profiles shows that the BSC follows the increase of the Gr(10) spot, proving directly that the BSC indicates high-quality graphene. Additional metal deposition experiments provide more information about the BSC. The BSC is insensitive to metal deposition, and it increases with metal intercalation, because a more uniform interface forms between graphene and SiC. These experiments support the conclusion that the BSC originates from electron confinement within SLG, and surprisingly, it is an excellent measure of graphene uniformity. © 2020 American Chemical Society. All rights reserved.
    view abstractdoi: 10.1021/acs.jpclett.0c02113
  • 2020 • 247 Impact of forsterite addition on mechanical and biological properties of composites
    Choudhary, R. and Venkatraman, S.K. and Bulygina, I. and Chatterjee, A. and Abraham, J. and Senatov, F. and Kaloshkin, S. and Ilyasov, A. and Abakumov, M. and Knyazeva, M. and Kukui, D. and Walther, F. and Swamiappan, S.
    Journal of Asian Ceramic Societies 8 1051-1065 (2020)
    The objective of designing a biocompatible and mechanically stable scaffold for hard tissue regeneration was achieved by fabricating diopside/forsterite composites. Superior mechanical strength, slow degradation, excellent antibacterial activity and good cell viability were attained with the increase in forsterite ratio in the composites whereas apatite deposition ability got enhanced as the diopside content was increased. The variation in the rate of apatite deposition on the surface of composites exhibited different surface topography such as nano-structured interconnected fibrous network and globular morphology. The scaffolds after one-month immersion in a physiological environment exhibited good Young’s modulus and compressive strength. Clear and distinguishable prevention of bacterial growth confirms that composites have the potential to inhibit microbial colony formation of nine different clinical pathogens. The composite containing major diopside content was more effective toward S. aureus while the growth of E. coli was inhibited more by the composite containing a higher ratio of forsterite. The interaction of composites with MG-63 cells showed an enhancement in cell viability as the content of forsterite was increased. MTS assay confirmed the cytocompatibility of samples with negligible toxicity effects. © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The Korean Ceramic Society and The Ceramic Society of Japan.
    view abstractdoi: 10.1080/21870764.2020.1807695
  • 2020 • 246 In-situ synthesis via laser metal deposition of a lean Cu–3.4Cr–0.6Nb (at%) conductive alloy hardened by Cr nano-scale precipitates and by Laves phase micro-particles
    Kini, A.R. and Maischner, D. and Weisheit, A. and Ponge, D. and Gault, B. and Jägle, E.A. and Raabe, D.
    Acta Materialia 197 330-340 (2020)
    Conductive and yet strong copper alloys are essential materials in highly mechanically loaded electrical devices. We demonstrate a novel in-situ synthesis approach via laser metal deposition (LMD) in a lean copper alloy, Cu–3.4Cr–0.6Nb (at%). Strengthening in the lean alloy comes from chromium nano-scale precipitates formed in-situ (4 nm diameter; number density 8 × 1023 m−3) and from Laves phase particles (< 1 µm diameter; 2.2 vol%), dispersed across the microstructure. This dual dispersion, in a nearly pure copper matrix, is achieved through a suited combination of chromium alloying and cooling rate during LMD synthesis. The as-synthesized alloy has a conductivity of 68% IACS (International Annealed Copper Standard) and a Vickers hardness of 146, at room temperature. The latter is 11% above the value reported for the strongest lean reference ternary alloy Cu–8Cr–4Nb (at%). The in-situ synthesis approach averts any heat treatment step, which has been an essential step previously in conventional manufacturing, for realizing the property combination in lean Cu–Cr based system. © 2020
    view abstractdoi: 10.1016/j.actamat.2020.07.035
  • 2020 • 245 Laser metal deposition of refractory high-entropy alloys for high-throughput synthesis and structure-property characterization
    Dobbelstein, H. and George, E.P. and Gurevich, E.L. and Kostka, A. and Ostendorf, A. and Laplanche, G.
    International Journal of Extreme Manufacturing 3 (2020)
    Progress in materials development is often paced by the time required to produce and evaluate a large number of alloys with different chemical compositions. This applies especially to refractory high-entropy alloys (RHEAs), which are difficult to synthesize and process by conventional methods. To evaluate a possible way to accelerate the process, high-throughput laser metal deposition was used in this work to prepare a quinary RHEA, TiZrNbHfTa, as well as its quaternary and ternary subsystems by in-situ alloying of elemental powders. Compositionally graded variants of the quinary RHEA were also analyzed. Our results show that the influence of various parameters such as powder shape and purity, alloy composition, and especially the solidification range, on the processability, microstructure, porosity, and mechanical properties can be investigated rapidly. The strength of these alloys was mainly affected by the oxygen and nitrogen contents of the starting powders, while substitutional solid solution strengthening played a minor role. © 2020 The Author(s). Published by IOP Publishing Ltd
    view abstractdoi: 10.1088/2631-7990/abcca8
  • 2020 • 244 Orientation-dependent deformation behavior of 316L steel manufactured by laser metal deposition and casting under local scratch and indentation load
    Pöhl, F. and Hardes, C. and Scholz, F. and Frenzel, J.
    Materials 13 (2020)
    This study analyzes the local deformation behavior of austenitic stainless steel 316L, manufactured conventionally by casting and additively by laser metal deposition (LMD). We produced directionally solidified 316L specimens with most grains showing (001) orientations parallel to the longitudinal specimen axis. We conducted nanoindentation and scratch experiments for local mechanical characterization and topography measurements (atomic force microscopy and confocal laser scanning microscopy) of indentation imprints and residual scratch grooves for the analysis of the deformation behavior and, in particular, of the pile-up behavior. The local mechanical properties and deformation behavior were correlated to the local microstructure investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy and electron backscatter diffraction analysis. The results show that the local mechanical properties, deformation behavior, and scratch resistance strongly depend on the crystallographic orientation. Nearly (001)-oriented grains parallel to the surface show the lowest hardness, followed by an increasing hardness of nearly (101)-and (111)-oriented grains. Consequently, scratch depth is the greatest for nearly (001)-oriented grains followed by (101) and (111) orientations. This tendency is seen independently of the analyzed manufacturing route, namely Bridgman solidification and laser metal deposition. In general, the laser metal deposition process leads to a higher strength and hardness, which is mainly attributed to a higher dislocation density. Under the investigated loading conditions, the cellular segregation substructure is not found to significantly and directly change the local deformation behavior during indentation and scratch testing. © 2020 by the authors.
    view abstractdoi: 10.3390/MA13071765
  • 2020 • 243 Reduced-graphene-oxide-based needle-type field-effect transistor for dopamine sensing
    Quast, T. and Mariani, F. and Scavetta, E. and Schuhmann, W. and Andronescu, C.
    ChemElectroChem 7 1922-1927 (2020)
    Owing to their intrinsic amplifying effect together with their temporal resolution, field-effect transistors (FETs) are gaining momentum for the detection of different biomolecules at ultralow concentration levels such as, for example, neurotransmitters, particularly if the concentration level of the analyte is below the detection limit of commonly used electrochemical sensing methods. We demonstrate the fabrication of a spearhead reduced graphene oxide (rGO)-based FET. The fabrication of the rGO-based FET by means of an electrochemical pulse deposition technique enables a controllable process including both the deposition and reduction of the deposited graphene oxide between two carbon nanoelectrodes to form the channel of the rGO-based FET. While using double-barrel carbon nanoelectrodes, the as-produced FETs offer new possibilities in terms of their applicability in very small volumes as well as the option of being positioned close to the desired measurement region. The fabrication process was evaluated and optimized to obtain rGO-based FETs with high performance. The as-fabricated devices were evaluated in terms of sensitivity and selectivity towards dopamine. The tested devices not only showed high sensitivity towards dopamine with a linear response ranging from 1nM to 1 μM, but also maintained a similar sensing performance in the presence of 500 μM ascorbic acid. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
    view abstractdoi: 10.1002/celc.202000162
  • 2020 • 242 The Planar Multipole Resonance Probe: A Minimally Invasive Monitoring Concept for Plasma-Assisted Dielectric Deposition Processes
    Pohle, D. and Schulz, C. and Oberberg, M. and Awakowicz, P. and Rolfes, I.
    IEEE Transactions on Microwave Theory and Techniques 68 2067-2079 (2020)
    In this article, a novel minimally invasive approach to plasma monitoring in the challenging environment of dielectric deposition processes based on the planar multipole resonance probe (pMRP) is presented. By placing the sensor on the plasma-remote side of a dielectric substrate to be coated, perturbations of the process due to its presence can be significantly reduced. Since the electric field of the sensor is able to penetrate dielectric layers, a plasma supervision through the substrate is enabled. To investigate the effect of increasing coating thicknesses on the measurement performance for a broad spectrum of materials and plasma conditions, the results of extensive 3-D full-wave simulations performed with CST Microwave Studio are evaluated. Finally, real-time monitoring results of an argon-oxygen plasma during a sputter deposition with aluminum oxide on a polyethylene terephthalate (PET) film substrate together with a comparison to external process parameters are presented. The results demonstrate both the applicability of the proposed concept and its insensitivity to additional dielectric coatings. © 1963-2012 IEEE.
    view abstractdoi: 10.1109/TMTT.2020.2974835
  • 2019 • 241 A numerical analysis of a microwave induced coaxial surface wave discharge fed with a mixture of oxygen and hexamethyldisiloxane for the purpose of deposition
    Kemaneci, E. and Mitschker, F. and Benedikt, J. and Eremin, D. and Awakowicz, P. and Brinkmann, R.P.
    Plasma Sources Science and Technology 28 (2019)
    A microwave induced coaxial surface wave discharge with a feeding gas mixture of oxygen and hexamethyldisiloxane used for the deposition of polymer coatings is numerically analysed by a volume-averaged zero-dimensional modelling formalism. A set of edge-to-centre ratios are analytically estimated for a self-consistent description of the positive ion and reactive neutral flux at the radial walls (Kemaneci et al 2017 J. Phys. D: Appl. Phys. 50 245203). The simulation results are compared with the measurements of a wide variety of distinct particle concentrations as well as of the electron temperature and an agreement is obtained with respect to the input power, the pressure and the oxygen to hexamethyldisiloxane flow ratios. The net charge density is dominated by Si2OC5H15 + with a negligible degree of electronegativity. Hexamethyldisiloxane is fragmented into methyl radical via the electron impact dissociation and the dissociative ionization. Large amounts of hydrocarbons, water, carbon monoxide, carbon dioxide and hydrogen molecules are produced. A significant portion of the net hydrocarbon and carbon monoxide production rates is formed by the emission from the solid surfaces due to the hydrogen and oxygen atom flux. The essential roles of C3H9SiO molecules and Si2OC5H15 + ions on the deposition process are verified. © 2019 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6595/ab3f8a
  • 2019 • 240 Adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells on additively manufactured Ti6Al4V alloy scaffolds modified with calcium phosphate nanoparticles
    Chudinova, E.A. and Surmeneva, M.A. and Timin, A.S. and Karpov, T.E. and Wittmar, A. and Ulbricht, M. and Ivanova, A. and Loza, K. and Prymak, O. and Koptyug, A. and Epple, M. and Surmenev, R.A.
    Colloids and Surfaces B: Biointerfaces 176 130-139 (2019)
    In the present study, biocomposites based on 3D porous additively manufactured Ti6Al4V (Ti64) scaffolds modified with biocompatible calcium phosphate nanoparticles (CaPNPs) were investigated. Ti64 scaffolds were manufactured via electron beam melting technology using an Arcam machine. Electrophoretic deposition was used to modify the scaffolds with CaPNPs, which were synthesized by precipitation in the presence of polyethyleneimine (PEI). Dynamic light scattering revealed that the CaP/PEI nanoparticles had an average size of 46 ± 18 nm and a zeta potential of +22 ± 9 mV. Scanning electron microscopy (SEM) revealed that the obtained spherical CaPNPs had an average diameter of approximately 90 nm. The titanium-based scaffolds coated with CaPNPs exhibited improved hydrophilic surface properties, with a water contact angle below 5°. Cultivation of human mesenchymal stem cells (hMSCs) on the CaPNPs-coated Ti64 scaffolds indicated that the improved hydrophilicity was beneficial for the attachment and growth of cells in vitro. The Ti6Al4V/CaPNPs scaffold supported an increase in the alkaline phosphatase (ALP) activity of cells. In addition to the favourable cell proliferation and differentiation, Ti6Al4V/CaPNPs scaffolds displayed increased mineralization compared to non-coated Ti6Al4V scaffolds. Thus, the developed composite 3D scaffolds of Ti6Al4V functionalized with CaPNPs are promising materials for different applications related to bone repair. © 2018 Elsevier B.V.
    view abstractdoi: 10.1016/j.colsurfb.2018.12.047
  • 2019 • 239 Correlation between sputter deposition parameters and I-V characteristics in double-barrier memristive devices
    Zahari, F. and Schlichting, F. and Strobel, J. and Dirkmann, S. and Cipo, J. and Gauter, S. and Trieschmann, J. and Marquardt, R. and Haberfehlner, G. and Kothleitner, G. and Kienle, L. and Mussenbrock, T. and Ziegler, M. and Kers...
    Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics 37 (2019)
    Sputter deposition is one of the most important techniques for the fabrication of memristive devices. It allows us to adjust the concentration of defects within the fabricated metal-oxide thin film layers. The defect concentration is important for those memristive devices whose resistance changes during device operation due to the drift of ions within the active layer while an electric field is applied. Reversible change of the resistance is an important property for devices used in neuromorphic circuits to emulate synaptic behavior. These novel bioinspired hardware architectures are ascertained in terms of advantageous features such as lower power dissipation and improved cognitive capabilities compared to state-of-the-art digital electronics. Thus, memristive devices are intensively studied with regard to neuromorphic analog systems. Double-barrier memristive devices with the layer sequence Nb/Al/Al2O3/NbOx/Au are promising candidates to emulate analog synaptic behavior in hardware. Here, the niobium oxide acts as the active layer, in which charged defects can drift due to an applied electric field causing analog resistive switching. In this publication, crucial parameters of the process plasma for thin film deposition, such as floating potential, electron temperature, and the energy flux to the substrate, are correlated with the I-V characteristics of the individual memristive devices. The results from plasma diagnostics are combined with microscopic and simulation methods. Strong differences in the oxidation state of the niobium oxide layers were found by transmission electron microscopy. Furthermore, kinetic Monte Carlo simulations indicate the impact of the defect concentration within the NbOx layer on the I-V hysteresis. The findings may enable a new pathway for the development of plasma-engineered memristive devices tailored for specific application. © 2019 Author(s).
    view abstractdoi: 10.1116/1.5119984
  • 2019 • 238 Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles
    Surmeneva, M. and Lapanje, A. and Chudinova, E. and Ivanova, A. and Koptyug, A. and Loza, K. and Prymak, O. and Epple, M. and Ennen-Roth, F. and Ulbricht, M. and Rijavec, T. and Surmenev, R.
    Applied Surface Science 480 822-829 (2019)
    The design of an ideal bone graft substitute has been a long-standing effort, and a number of strategies have been developed to improve bone regeneration. Electron beam melting (EBM) is an additive manufacturing method allowing for the production of porous implants with highly defined external dimensions and internal architectures. The increasing surface area of the implant may also increase the abilities of pathogenic microorganisms to adhere to the surfaces and form a biofilm, which may result in serious complications. The aim of this study was to explore the modifications of Ti6Al4V alloy scaffolds to reduce the abilities of bacteria to attach to the EBM-manufactured implant surface. The layers composed of silver (Ag), calcium phosphate (CaP) nanoparticles (NPs) and combinations of both were formed on the EBM-fabricated metallic scaffolds by electrophoretic deposition in order to provide them with antimicrobial properties. The assay of bacterial colonization on the surface was performed with the exposure of scaffold surfaces to Staphylococcus aureus cells for up to 17 h. Principal component analysis (PCA) was used to assess the relationships between different surface features of the studied samples and bacterial adhesion. The results indicate that by modifying the implant surface with appropriate nanostructures that change the hydrophobicity and the surface roughness at the nano scale, physical cues are provided that disrupt bacterial adhesion. Our results clearly show that AgNPs at a concentration of approximately 0.02 mg/сm 2 that were deposited together with CaPNPs covered by positively charge polyethylenimine (PEI) on the surface of EBM-sintered Ti6Al4V scaffolds hindered bacterial growth, as the total number of attached cells (NAC) of S. aureus remained at the same level during the 17 h of exposure, which indicates bacteriostatic activity. © 2019 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2019.03.003
  • 2019 • 237 Extremely Robust Gas-Quenching Deposition of Halide Perovskites on Top of Hydrophobic Hole Transport Materials for Inverted (p-i-n) Solar Cells by Targeting the Precursor Wetting Issue
    Brinkmann, K.O. and He, J. and Schubert, F. and Malerczyk, J. and Kreusel, C. and Van Gen Hassend, F. and Weber, S. and Song, J. and Qu, J. and Riedl, T.
    ACS Applied Materials and Interfaces 11 40172-40179 (2019)
    Lead halide perovskite solar cells afford high power conversion efficiencies, even though the photoactive layer is formed in a solution process. At the same time, solution processing may impose some severe dewetting issues, especially if organic, hydrophobic charge transport layers are considered. Ultimately, very narrow processing windows with a relatively large spread in device performance and a considerable lab-to-lab variation result. Here, we unambiguously identify dimethylsulfoxide (DMSO), which is commonly used as a co-solvent and complexing agent, to be the main reason for dewetting of the precursor solution on hydrophobic hole transport layers, such as polytriarylamine, in a gas-quenching-assisted deposition process. In striking contrast, we will show that N-methyl-2-pyrrolidon (NMP), which has a lower hydrophilic-lipophilic-balance, can be favorably used instead of DMSO to strongly mitigate these dewetting issues. The resulting high-quality perovskite layers are extremely tolerant with respect to the mixing ratio (NMP/dimethylformamide) and other process parameters. Thus, our findings afford an outstandingly robust, easy to use, and fail-safe deposition technique, yielding single (MAPbI3) and double (FA0.94Cs0.06PbI3) cation perovskite solar cells with high efficiencies (∼18.5%). Most notably, the statistical variation of the devices is significantly reduced, even if the deposition process is performed by different persons. We foresee that our results will further the reliable preparation of perovskite thin films and mitigate process-to-process variations that still hinder the prospects of upscaling perovskite solar technology. Copyright © 2019 American Chemical Society.
    view abstractdoi: 10.1021/acsami.9b15867
  • 2019 • 236 Functionalization of titania nanotubes with electrophoretically deposited silver and calcium phosphate nanoparticles: Structure, composition and antibacterial assay
    Chernozem, R.V. and Surmeneva, M.A. and Krause, B. and Baumbach, T. and Ignatov, V.P. and Prymak, O. and Loza, K. and Epple, M. and Ennen-Roth, F. and Wittmar, A. and Ulbricht, M. and Chudinova, E.A. and Rijavec, T. and Lapanje, A...
    Materials Science and Engineering C 97 420-430 (2019)
    Herein TiO2 nanotubes (NTs) were fabricated via electrochemical anodization and coated with silver and calcium phosphate (CaP) nanoparticles (NPs) by electrophoretic deposition. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) revealed that Ag and CaP NPs were successfully deposited onto the TiO2 NTs. Using X-ray diffraction, only anatase and Ti were observed after deposition of Ag and CaP NPs. However, X-ray photoelectron spectroscopy (XPS) analysis revealed that the binding energy (BE) of the Ag and CaP NP core levels corresponded to metallic Ag, hydroxyapatite and amorphous calcium phosphate, based on the knowledge that CaP NPs synthesized by precipitation have the nanocrystalline structure of hydroxyapatite. The application of Ag NPs allows for decreasing the water contact angle and thus increasing the surface free energy. It was concluded that the CaP NP surfaces are superhydrophilic. A significant antimicrobial effect was observed on the TiO2 NT surface after the application of Ag NPs and/or CaP NPs compared with that of the pure TiO2 NTs. Thus, fabrication of TiO2 NTs, Ag NPs and CaP NPs with PEI is promising for diverse biomedical applications, such as in constructing a biocompatible coating on the surface of Ti that includes an antimicrobial effect. © 2018 Elsevier B.V.
    view abstractdoi: 10.1016/j.msec.2018.12.045
  • 2019 • 235 Highly Compact TiO 2 Films by Spray Pyrolysis and Application in Perovskite Solar Cells
    Möllmann, A. and Gedamu, D. and Vivo, P. and Frohnhoven, R. and Stadler, D. and Fischer, T. and Ka, I. and Steinhorst, M. and Nechache, R. and Rosei, F. and Cloutier, S.G. and Kirchartz, T. and Mathur, S.
    Advanced Engineering Materials 21 (2019)
    Transparent and pinhole free hole-blocking layers such as TiO 2 grown at low temperatures and by scalable processes are necessary to reduce production costs and thus enabling commercialization of perovskite solar cells. Here, the authors compare the transport properties of TiO 2 compact layers grown by spray pyrolysis from commonly used titanium diisopropoxide bisacetylacetonate ([Ti(OPr i ) 2 (acac) 2 ]) precursor to films grown by spray pyrolysis of TiCl 4 . Spray pyrolysis provides insights into the interdependence of precursor chemistry and electron transport properties of TiO 2 films and their influence on the performance of the perovskite solar cells. X-ray diffraction and X-ray photoelectron spectroscopy data confirm the chemical and structural composition of the obtained films. Thin film deposition at lower temperature (150 °C) are conducted using TiCl 4 to evaluate the influence of crystal growth and topography by scanning electron microscopy and atomic force microscopy as well as thickness (profilometry) and transmittance (UV/Vis spectroscopy) on the power conversion efficiency of perovskite solar cells. TiO 2 compact layers grown from TiCl 4 enhance the power conversion efficiency by acting as superior electron transfer medium and by reducing hysteresis behavior, when compared to films grown using titanium diisopropoxide bisacetylacetonate. UV/Vis spectroscopy and external quantum efficiency studies reveal the correlation of transmittance on the power conversion efficiency. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/adem.201801196
  • 2019 • 234 Influence of Calcium-Phosphate Coating on Wettability of Hybrid Piezoelectric Scaffolds
    Zviagin, A. and Chernozem, R. and Surmeneva, M. and Loza, K. and Prymak, O. and Ulbricht, M. and Epple, M. and Surmenev, R.
    IOP Conference Series: Materials Science and Engineering 597 (2019)
    Herein, electrospun biodegradable scaffolds based on polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB) and polyaniline (PANi) polymers were fabricated. A calcium-phosphate (CaP) coating was deposited on the surface of the scaffolds via an improved soaking process. Influence of the deposition cycles and ethanol concentration in the solution on the relative increase of the scaffolds weight and water contact angle (WCA) are determined. The characterization of the molecular and crystal structure confirmed the formation of CaP phase. Importantly, WCA results showed that the pristine scaffolds have the hydrophobic surface, while the deposition of CaP coating onto scaffolds allows to significantly improve the surface wetting behavior, and infiltration of the water droplets into the CaP-coated scaffolds was observed. Thus, the fabricated hybrid biodegradable piezoelectric scaffolds can be utilized for regenerative medicine. © Published under licence by IOP Publishing Ltd.
    view abstractdoi: 10.1088/1757-899X/597/1/012061
  • 2019 • 233 Influence of the etching processes on the adhesion of TiAlN coatings deposited by DCMS, HiPIMS and hybrid techniques on heat treated AISI H11
    Tillmann, W. and Grisales, D. and Stangier, D. and Ben Jebara, I. and Kang, H.
    Surface and Coatings Technology 378 (2019)
    Ensuring a good adhesion of the coatings to the substrate is one of the key points during the manufacturing of machining and forming tools. The nature of the substrate material and the way it is pre-treated and cleaned before the deposition plays an important role in the adhesion of the coatings. The in-situ cleaning processes as plasma etching and metal ion etching have demonstrated to have an influence on the adhesion of different coating/substrate systems. The introduction of HiPIMS technologies for the in-situ cleaning and the deposition of PVD coatings throughout this technique has opened varied opportunities to improve the performance of the coated parts. Systematic and comparative analysis of the influence of plasma etching itself (PE), plasma etching and metal ion etching (PE + MIE), and plasma etching and HiPIMS etching (PE + HiPE) etching processes on the adhesion of the TiAlN to the hot work tool steel AISI H11 has been performed. Additionally, subsequent to the etching processes, TiAlN coatings have been deposited using DCMS, HiPIMS and hybrid (DCMS/HiPIMS) technologies. Residual stresses of the heat treated AISI H11 were evaluated before and after the different etching process as well as after coating's deposition. It has been shown that the etching process affects the growth direction and microstructure of the TiAlN coatings, especially of those deposited by DCMS and hybrid. For instance, DCMS and hybrid TiAlN coatings deposited after PE have the presence of the TiAlN (200) reflection, not evidenced on the coatings deposited after PE + MIE and PE + HiPE. Moreover, hybrid coatings on PE + HiPE have a preferential (220) growth orientation and a (111) orientation when deposited on PE and PE + MIE cleaned substrate. Finally, in order to evaluate the adhesion of the coatings to the substrate, both scratch test and Rockwell C indentation test were used. The coatings deposited on the mere plasma etched (PE) substrate turn out to be the coatings with the highest critical load Lc3 and the lowest HF standards (HF1–HF3). This behaviour is attributed to the conservation of the substrate's surface integrity and the no promotion of surface tensions that can act in detriment of the adhesion of the coating. © 2019 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2019.125075
  • 2019 • 232 Mechanical Test Structures for the Determination of Normal Stress in Multilayer Freestanding MEMS-Membranes
    Michel, M. and Vogt, H.
    PRIME 2019 - 15th Conference on Ph.D. Research in Microelectronics and Electronics, Proceedings 301-304 (2019)
    Understanding the mechanical behavior of free standing membranes is a point of common interest for MEMS structures, where a certain distance or deflection of a cantilever or membrane refers directly to the detectors performance. A material system with different types of basic MEMS materials like doped silicon as well as a conducting and passivation layer was characterized. Mechanical stress was measured directly after deposition and at the freestanding membranes itself. It is found out, that the mechanical stress of the investigated material systems decreases up to two orders of magnitude due to relaxation between material deposition and releasing membranes from substrate. © 2019 IEEE.
    view abstractdoi: 10.1109/PRIME.2019.8787833
  • 2019 • 231 Minimally Invasive Supervision of Plasma-assisted Dielectric Deposition Processes
    Pohle, D. and Schulz, C. and Oberberg, M. and Awakowicz, P. and Rolfes, I.
    IMWS-AMP 2019 - 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications 163-165 (2019)
    This paper introduces a minimally invasive in-situ plasma monitoring concept suited for the challenging conditions in dielectric deposition processes. Based on the so-called stacked planar multipole resonance probe (spMRP), the sensor is placed directly on the plasma-remote side of a dielectric substrate to be coated, thus minimizing its influence on the process. The sensor's electric field penetrates both substrate and deposited dielectric layers and couples into the plasma. This enables an effective supervision of the plasma parameters required for process control at the point of highest interest. The effect of increasing coating thicknesses on the measurement performance is investigated within 3D electromagnetic field simulations. Final measurements in an argon-oxygen plasma depositing aluminium oxide confirm both the general suitability of the proposed concept as well as the insensitivity to additional dielectric coatings. © 2019 IEEE.
    view abstractdoi: 10.1109/IMWS-AMP.2019.8880124
  • 2019 • 230 Predicting collision efficiencies of colloidal nanoparticles in single spherical and fibrous collectors using an individual particle tracking method
    Lee, H. and Kim, S.C. and Chen, S.-C. and Segets, D. and Pui, D.Y.H.
    Separation and Purification Technology 222 202-213 (2019)
    We investigate the deposition of colloids onto granular and fibrous collectors by computational fluid dynamics (CFD) simulations. In particular the collision efficiency under unfavorable conditions, i.e., like-charged surfaces, was in focus. Particle trajectories were analyzed in a Lagrangian reference frame using a discrete phase model (DPM). By user-defined functions (UDFs) we incorporated interception as important deposition mechanism and calculated interaction energies between particle and collector surfaces utilizing the extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory. Adhesive and hydrodynamic torques acting on deposited particles were compared through the developed UDFs to consider particle detachment. Within each DPM process, all abovementioned calculations on every particle are performed continuously, allowing to understand particle deposition under different physico-chemical conditions. Simulated data on collision efficiencies for the granular collector were in good agreement with theory and experiments. Simulations for the fibrous collector showed that with increasing fluid velocity the hydrodynamic torque acting on particles attached to smaller fibers was increased. This enhanced the detachment and significantly lowered the collision efficiency, especially for larger particles. In conclusion, the developed CFD methods for predicting the collision efficiency on granular and fibrous collectors provide a powerful tool for examining the deposition behaviors of colloidal particles in porous media. © 2019 Elsevier B.V.
    view abstractdoi: 10.1016/j.seppur.2019.04.025
  • 2019 • 229 Printing "smart" Inks of Redox-Responsive Organometallic Polymers on Microelectrode Arrays for Molecular Sensing
    Cirelli, M. and Hao, J. and Bor, T.C. and Duvigneau, J. and Benson, N. and Akkerman, R. and Hempenius, M.A. and Vancso, G.J.
    ACS Applied Materials and Interfaces 11 37060-37068 (2019)
    Printing arrays of responsive spots for multiplexed sensing with electrochemical readout requires new molecules and precise, high-throughput deposition of active compounds on microelectrodes with spatial control. We have designed and developed new redox-responsive polymers, featuring a poly(ferrocenylsilane) (PFS) backbone and side groups with disulfide units, which allow an efficient and stable bonding to Au substrates, using sulfur-gold coupling chemistry in a "grafting-to" approach. The polymer molecules can be employed for area selective molecular sensing following their deposition by high-precision inkjet printing. The new PFS derivatives, which serve as "molecular inks", were characterized by 1H NMR, 13C NMR, and FTIR spectroscopies and by gel permeation chromatography. The viscosity and surface tension of the inks were assessed by rheology and pendant drop contact angle measurements, respectively. Commercial microelectrode arrays were modified with the new PFS ink by using inkjet printing in the "drop-on-demand" mode. FTIR spectroscopy, AFM, and EDX-SEM confirmed a successful, spatially localized PFS modification of the individual electrodes within the sensing cells of the microelectrode arrays. The potential application of these devices to act as an electrochemical sensor array was demonstrated with a model analyte, ascorbic acid, by using cyclic voltammetry and amperometric measurements. © 2019 American Chemical Society.
    view abstractdoi: 10.1021/acsami.9b11927
  • 2019 • 228 Simulating nanocrystal-based solar cells: A lead sulfide case study
    Lin, W.M.M. and Yazdani, N. and Yarema, O. and Volk, S. and Yarema, M. and Kirchartz, T. and Wood, V.
    Journal of Chemical Physics 151 (2019)
    Nanocrystal-based solar cells are promising candidates for next generation photovoltaic applications; however, the most recent improvements to the device chemistry and architecture have been mostly trial-and-error based advancements. Due to complex interdependencies among parameters, determining factors that limit overall solar cell efficiency are not trivial. Furthermore, many of the underlying chemical and physical parameters of nanocrystal-based solar cells have only recently been understood and quantified. Here, we show that this new understanding of interfaces, transport, and origin of trap states in nanocrystal-based semiconductors can be integrated into simulation tools, based on 1D drift-diffusion models. Using input parameters measured in independent experiments, we find excellent agreement between experimentally measured and simulated PbS nanocrystal solar cell behavior without having to fit any parameters. We then use this simulation to understand the impact of interfaces, charge carrier mobility, and trap-assisted recombination on nanocrystal performance. We find that careful engineering of the interface between the nanocrystals and the current collector is crucial for an optimal open-circuit voltage. We also show that in the regime of trap-state densities found in PbS nanocrystal solar cells (∼1017 cm-3), device performance exhibits strong dependence on the trap state density, explaining the sensitivity of power conversion efficiency to small changes in nanocrystal synthesis and nanocrystal thin-film deposition that has been reported in the literature. Based on these findings, we propose a systematic approach to nanocrystal solar cell optimization. Our method for incorporating parameters into simulations presented and validated here can be adopted to speed up the understanding and development of all types of nanocrystal-based solar cells. © 2019 Author(s).
    view abstractdoi: 10.1063/1.5129159
  • 2019 • 227 Synthesis, microstructure, and hardness of rapidly solidified Cu-Cr alloys
    Garzón-Manjón, A. and Christiansen, L. and Kirchlechner, I. and Breitbach, B. and Liebscher, C.H. and Springer, H. and Dehm, G.
    Journal of Alloys and Compounds 794 203-209 (2019)
    Cu-Cr alloys with ∼32 at.% Cr were rapidly solidified by splat quenching or laser melting techniques with the intention to form a very fine grained, non-equilibrium nanostructure similar to those obtained by severe plastic deformation or thin film deposition. The rapidly solidified Cu-Cr alloys were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Both synthesis techniques lead to a similar two-phase microstructure with a nearly pure fcc Cu matrix with μm grain sizes and bcc Cr particles highly supersaturated with Cu. Splat quenching provides finer bcc particles with dimensions of less than 50 nm compared to laser melting with particle sizes of 100–2000 nm. In case of laser melting, (14 ± 2) at.% Cu are contained in the bcc phase, while splat quenching freezes (20 ± 2) at.% Cu in the bcc particles. The microstructures are discussed and compared to the non-equilibrium microstructures reported in literature using severe plastic deformation and thin films deposition. © 2019 Elsevier B.V.
    view abstractdoi: 10.1016/j.jallcom.2019.04.209
  • 2018 • 226 A method for the in-situ study of solid-state joining techniques using synchrotron radiation - observation of phase transformations in Ti-6Al-4V after friction surfacing
    Hanke, S. and Staron, P. and Fischer, T. and Fitseva, V. and dos Santos, J.F.
    Surface and Coatings Technology 335 355-367 (2018)
    The solid-state deposition process Friction Surfacing (FS) was applied to Ti-6Al-4V alloy on portable welding equipment at a high-energy synchrotron beamline. The heat input and coating thickness were altered by varying the deposition speed. X-ray diffraction was carried out in-situ during the deposition process and the cooling of the coated samples. Phase transformations were evaluated and correlated with thermal cycles determined by thermocouples and an infrared camera. SEM investigation of the coating microstructure was conducted to examine the morphology of the α phase. During FS the coating material is severely deformed and dynamically recrystallized in the β phase state at temperatures > 1300 °C. Small changes in the β grain size were observed within the first 2 s after deposition only. Depending on the cooling rate it transforms into different types of α phase during cooling. Phase transformation rates were found to correlate well with the differences in α morphology. The two faster translational speeds showed transformation rates > 45 vol%/s and a partially martensitic microstructure. When a thick coating is deposited at low translational speed, α → β transformation continues for several seconds after deposition, followed by a slow cooling rate resulting in martensite free coatings containing α m from massive transformation. The potential gain and the deficiencies of this complex in-situ study of a technical process, instead of simplified model experiments, for the understanding of fundamental mechanisms involved in FS are discussed. © 2017
    view abstractdoi: 10.1016/j.surfcoat.2017.12.049
  • 2018 • 225 Advanced crystallographic study of the columnar growth of YZS coatings produced by PS-PVD
    He, W. and Mauer, G. and Schwedt, A. and Guillon, O. and Vaßen, R.
    Journal of the European Ceramic Society 38 2449-2453 (2018)
    In the Plasma Spray-Physical Vapor Deposition (PS-PVD) process, columnar structured coatings are deposited mainly from the vapor phase due to the intensive evaporation of the feedstock powder. This paper highlights the application of electron backscatter diffraction (EBSD) for the characterization of columnar structured ceramic PS-PVD coatings. The growth processes of PS-PVD coatings could be elucidated, developing from small equiaxed crystals to large columnar crystals. Furthermore, the main effect of the torch swing on coating deposition could be the interruption of crystal growth and thus repeated nucleation. This may have a similar effect as slowly rotating the substrate in Electron Beam-Physical Vapor Deposition (EB-PVD). © 2017 Elsevier Ltd
    view abstractdoi: 10.1016/j.jeurceramsoc.2017.12.054
  • 2018 • 224 An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold
    Jürgensen, A. and Raschke, H. and Esser, N. and Hergenröder, R.
    Applied Surface Science 435 870-879 (2018)
    The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO− and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2017.11.150
  • 2018 • 223 Antibacterial Efficacy of Sacrifical Anode Thin Films Combining Silver with Platinum Group Elements within a Bacteria-Containing Human Plasma Clot
    Abuayyash, A. and Ziegler, N. and Gessmann, J. and Sengstock, C. and Schildhauer, T.A. and Ludwig, Al. and Köller, M.
    Advanced Engineering Materials 20 (2018)
    Silver (Ag) dots arrays (64 and 400 dots per mm2) are fabricated on a continuous platinum (Pt), palladium (Pd), or iridium (Ir) thin film (sacrifical anode systems for Ag) and for comparison on titanium (Ti) film (non-sacrifical anode system for Ag) by sputter deposition and photolithographic patterning. The samples are embedded within a tissue-like plasma clot matrix containing Staphylococcus aureus (S. aureus), cultivated for 24 h. Bacterial growth is analyzed by fluorescence microscopy. Among platinum group sacrifical anode elements and a dense Ag sample, only the high Ag ion releasing Ag–Ir system is able to inhibit the bacterial growth within the adjacent plasma clot matrix. This study demonstrates that the antibacterial efficiency of Ag coatings is reduced under tissue-like conditions. However, the new sacrificial anode based Ag–Ir system can overcome this limitation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/adem.201700493
  • 2018 • 222 Atomic Layer Deposition of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors
    Ren, Q.-H. and Zhang, Y. and Lu, H.-L. and Wang, Y.-P. and Liu, W.-J. and Ji, X.-M. and Devi, A. and Jiang, A.-Q. and Zhang, D.W.
    ACS Applied Materials and Interfaces 10 468-476 (2018)
    A novel hybrid core-shell structure of ZnO nanowires (NWs)/Ni as a pseudocapacitor electrode was successfully fabricated by atomic layer deposition of a nickel shell, and its capacitive performance was systemically investigated. Transmission electron microscopy and X-ray photoelectron spectroscopy results indicated that the NiO was formed at the interface between ZnO and Ni where the Ni was oxidized by ZnO during the ALD of the Ni layer. Electrochemical measurement results revealed that the Ti/ZnO NWs/Ni (1500 cycles) electrode with a 30 nm thick Ni-NiO shell layer had the best supercapacitor properties including ultrahigh specific capacitance (∼2440 F g-1), good rate capability (80.5%) under high current charge-discharge conditions, and a relatively better cycling stability (86.7% of the initial value remained after 750 cycles at 10 A g-1). These attractive capacitive behaviors are mainly attributed to the unique core-shell structure and the combined effect of ZnO NW arrays as short charge transfer pathways for ion diffusion and electron transfer as well as conductive Ni serving as channel for the fast electron transport to Ti substrate. This high-performance Ti/ZnO NWs/Ni hybrid structure is expected to be one of a promising electrodes for high-performance supercapacitor applications. © 2017 American Chemical Society.
    view abstractdoi: 10.1021/acsami.7b13392
  • 2018 • 221 Cold gas spraying of Ti-48Al-2Cr-2Nb intermetallic for jet engine applications
    Bakan, E. and Mauer, G. and Sohn, Y.J. and Schwedt, A. and Rackel, M.W. and Riedlberger, F. and Pyczak, F. and Peters, J.O. and Mecklenburg, M. and Gartner, T.M. and Vaßen, R.
    Surface and Coatings Technology (2018)
    The present article describes aspects of the cold gas spray processability of the intermetallic Ti-48Al-2Cr-2Nb (at. %) alloy, which is employed as a structural material in gas turbine engines. The effects of processing parameters, namely, gas pressure, gas temperature, spray distance, as well as the gas atomized feedstock particle size (d50 = 30 and 42 μm, respectively) and phase composition on deposition, were investigated. The results showed that when the highest available gas pressure (40 bar) and temperature (950 °C) were combined with a short spray distance (20 mm), well-adhering coatings could be deposited regardless of the investigated particle size. However, the maximum coating thickness could be achieved was about 30 μm with a deposition efficiency of 1%. Phase composition of the gas atomized feedstock was investigated with HT-XRD and according to the findings, heat treatment of the feedstock under vacuum was carried out. With this treatment, non-equilibrium, disordered α phase of the atomized powder was transformed into an α α2 and γ phase mixture. At the same time, an increase in the hardness and oxygen content of the powder was detected. Swipe test performed with the heat treated powder revealed no improvement in terms of deposition, in fact, the number of adhering particles on the substrate was decreased in comparison with that of the untreated powder. © 2018 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2018.11.092
  • 2018 • 220 Combinatorial metallurgical synthesis and processing of high-entropy alloys
    Li, Z. and Ludwig, Al. and Savan, A. and Springer, H. and Raabe, D.
    Journal of Materials Research 1-14 (2018)
    High-entropy alloys (HEAs) with multiple principal elements open up a practically infinite space for designing novel materials. Probing this huge material universe requires the use of combinatorial and high-throughput synthesis and processing methods. Here, we present and discuss four different combinatorial experimental methods that have been used to accelerate the development of novel HEAs, namely, rapid alloy prototyping, diffusion-multiples, laser additive manufacturing, and combinatorial co-deposition of thin-film materials libraries. While the first three approaches are bulk methods which allow for downstream processing and microstructure adaptation, the latter technique is a thin-film method capable of efficiently synthesizing wider ranges of composition and using high-throughput measurement techniques to characterize their structure and properties. Additional coupling of these high-throughput experimental methodologies with theoretical guidance regarding specific target features such as phase (meta)stability allows for effective screening of novel HEAs with beneficial property profiles. Copyright © Materials Research Society 2018
    view abstractdoi: 10.1557/jmr.2018.214
  • 2018 • 219 Comparative study on the deposition of silicon oxide permeation barrier coatings for polymers using hexamethyldisilazane (HMDSN) and hexamethyldisiloxane (HMDSO)
    Mitschker, F. and Schücke, L. and Hoppe, C. and Jaritz, M. and Dahlmann, R. and De Los Arcos, T. and Hopmann, C. and Grundmeier, G. and Awakowicz, P.
    Journal of Physics D: Applied Physics 51 (2018)
    The effect of the selection of hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDSN) as a precursor in a microwave driven low pressure plasma on the deposition of silicon oxide barrier coatings and silicon based organic interlayers on polyethylene terephthalate (PET) and polypropylene (PP) substrates is investigated. Mass spectrometry is used to quantify the absolute gas density and the degree of depletion of neutral precursor molecules under variation of oxygen admixture. On average, HMDSN shows a smaller density, a higher depletion and the production of smaller fragments. Subsequently, this is correlated with barrier performance and chemical structure as a function of barrier layer thickness and oxygen admixture on PET. For this purpose, the oxygen transmission rate (OTR) is measured and Fourier transformed infrared (FTIR) spectroscopy as well as x-ray photoelectron spectroscopy (XPS) is performed. HMDSN based coatings exhibit significantly higher barrier performances for high admixtures of oxygen (200 sccm). In comparison to HMDSO based processes, however, a higher supply of oxygen is necessary to achieve a sufficient degree of oxidation, cross-linking and, therefore, barrier performance. FTIR and XPS reveal a distinct carbon content for low oxygen admixtures (10 and 20 sccm) in case of HMDSN based coatings. The variation of interlayer thickness also reveals significantly higher OTR for HMDSO based coatings on PET and PP. Barrier performance of HMDSO based coatings improves with increasing interlayer thickness up to 10 nm for PET and PP. HMDSN based coatings exhibit a minimum of OTR without interlayer on PP and for 2 nm interlayer thickness on PET. Furthermore, HMDSN based coatings show distinctly higher bond strengths to the PP substrate. © 2018 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6463/aac0ab
  • 2018 • 218 Fracture toughness of Mo2BC thin films: Intrinsic toughness versus system toughening
    Soler, R. and Gleich, S. and Kirchlechner, C. and Scheu, C. and Schneider, J.M. and Dehm, G.
    Materials and Design 154 20-27 (2018)
    The fracture behaviour and microstructure evolution of sputtered Mo2BC films as a function of their deposition temperature is studied. Bipolar pulsed direct current magnetron sputtering was used to deposit Mo2BC thin films onto Si (100) wafers at substrate temperatures ranging from 380 to 630 °C. Microstructural characterization by transmission electron microscopy revealed that increasing the deposition temperature induces larger and more elongated grains, and a higher degree of crystallinity, transitioning from a partially amorphous to a fully crystalline film. The intrinsic fracture toughness of the Mo2BC films was studied by focussed ion beam milled micro-cantilever bending tests. A mild dependency of the intrinsic fracture toughness on the substrate deposition temperature was found. Fractograph analysis showed that the fracture behaviour was dominated by intergranular fracture or by fracture within the amorphous regions. Additionally, nanoindentation based fracture toughness measurements were used to probe the fracture behaviour of the Mo2BC/Si system, where residual stresses define the ‘apparent’ fracture toughness of the system. Depending on the substrate deposition temperature either compressive or tensile residual stresses developed in the films. This causes a relative change in the system toughness by up to one order of magnitude. The fracture experiments clearly reveal that notched cantilevers provide intrinsic toughness values of a material, while nanoindentation probes the toughness of the entire coating-substrate system. The combination of both techniques provides valuable design information for enhancing fracture resistance of Mo2BC films. © 2018 Elsevier Ltd
    view abstractdoi: 10.1016/j.matdes.2018.05.015
  • 2018 • 217 Improvement of fibre–matrix adhesion in cellulose/polyolefin composite materials by means of photo-chemical fibre surface modification
    Bahners, T. and Kelch, M. and Gebert, B. and Osorio Barajas, X.L. and Schmidt, T.C. and Gutmann, J.S. and Müssig, J.
    Cellulose 25 2451-2471 (2018)
    The mechanical performance of composites made from viscose fibre reinforcement fabrics and PP matrix polymers could be enhanced by photo-chemical surface modification of the viscose fibres. The surface modification was achieved by deposition of UV-polymerized organic thin layers using pentaerythritol triacrylate or diallylphthalate as monomers. The main effects of the photo-chemical modification refer to a decrease in wettability of the highly hydrophilic and water adsorbing viscose fibres and an increase in their affinity towards non-polar substances. Both effects were found to yield an increase in fibre–matrix adhesion and interfacial shear strength, resulting in better impact and tensile properties compared to untreated samples. The experimental composites were slightly inferior with regard to fibre–matrix adhesion and IFSS than established systems using modified matrix polymers such as the maleic anhydride modified PP, but exhibited similar or even improved properties in view of tensile strength and impact behaviour. The latter indicates superior energy transfer by the thin organic layers forming the fibre–matrix interface. Based on these observations, the studied concept of photo-polymerized inter-layers between fibre and matrix can be understood as a biomimetic concept mimicking the graded transitions of natural structures. © 2018, Springer Science+Business Media B.V., part of Springer Nature.
    view abstractdoi: 10.1007/s10570-018-1724-4
  • 2018 • 216 Influence of coating thickness on residual stress and adhesion-strength of cold-sprayed Inconel 718 coatings
    Singh, R. and Schruefer, S. and Wilson, S. and Gibmeier, J. and Vassen, R.
    Surface and Coatings Technology 350 64-73 (2018)
    In the cold spray process, deposition of particles takes place through intensive plastic deformation upon impact in a solid state at the temperatures well below their melting point. The high particle impact velocity causes high local stresses which lead to deforming the particles and the substrate plastically in the proximity of the particle–substrate interface. As a result, high residual stresses are introduced in cold spray coatings due to the peening effect of the particles collisions with the substrate. In this study, a powder based on the chemical composition of IN 718 was cold-sprayed on IN 718 substrates by using nitrogen gas for an application as a repair tool for aero engine components. The magnitude of the residual stress and its distribution through the thickness were measured by using the hole-drilling and the bending methods. Residual stress was also estimated by using an approach based on the physical process parameters. Mainly compressive residual stresses were observed in cold-sprayed IN 718 coatings. Accumulation of residual stresses in the coatings is highly affected by peening during deposition and it decreases with increase in thickness. It has been observed that the adhesion-strengths of cold-sprayed IN 718 coatings are highly influenced by coating thickness and residual stress states of the coating/substrate system. In the presence of residual stresses in the coatings, adhesion-strength decreases with increasing coating thickness. The energy-release-rate criterion has been used to predict adhesion-strength with increasing coating thickness. Predicted bond-strength values are close to the measured adhesion-strength values and decrease with increase in coating thickness. © 2018 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2018.06.080
  • 2018 • 215 Influence of spokes on the ionized metal flux fraction in chromium high power impulse magnetron sputtering
    Biskup, B. and Maszl, C. and Breilmann, W. and Held, J. and Böke, M. and Benedikt, J. and Von Keudell, A.
    Journal of Physics D: Applied Physics 51 (2018)
    High power impulse magnetron sputtering (HiPIMS) discharges are an excellent tool for deposition of thin films with superior properties. By adjusting the plasma parameters, an energetic metal and reactive species growth flux can be controlled. This control requires, however, a quantitative knowledge of the ion-to-neutral ratio in the growth flux and of the ion energy distribution function to optimize the deposited energy per incorporated atom in the film. This quantification is performed by combining two diagnostics, a quartz crystal microbalance (QCM) combined with an ion-repelling grid system (IReGS) to discriminate ions versus neutrals and a HIDEN EQP plasma monitor to measure the ion energy distribution function (IEDF). This approach yields the ionized metal flux fraction (IMFF) as the ionization degree in the growth flux. This is correlated to the plasma performance recorded by time resolved ICCD camera measurements, which allow to identify the formation of pronounced ionization zones, so called spokes, in the HiPIMS plasma. Thereby an automatic technique was developed to identify the spoke mode number. The data indicates two distinct regimes with respect to spoke formation that occur with increasing peak power, a stochastic regime with no spokes at low peak powers followed by a regime with distinct spokes at varying mode numbers at higher peak powers. The IMFF increases with increasing peak power reaching values of almost 80% at very high peak powers. The transition in between the two regimes coincides with a pronounced change in the IMFF. This change indicates that the formation of spokes apparently counteracts the return effect in HiPIMS. Based on the IMFF and the mean energy of the ions, the energy per deposited atom together with the overall energy flux onto the substrate is calculated. This allows us to determine an optimum for the peak power density around 0.5 kW cm-2 for chromium HiPIMS. © 2018 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6463/aaac15
  • 2018 • 214 Laser additive manufacturing of oxide dispersion strengthened steels using laser-generated nanoparticle-metal composite powders
    Wilms, M.B. and Streubel, R. and Frömel, F. and Weisheit, A. and Tenkamp, J. and Walther, F. and Barcikowski, S. and Schleifenbaum, J.H. and Gökce, B.
    Procedia CIRP 74 196-200 (2018)
    A new route for the synthesis of powder composites suitable for processing with laser additive manufacturing is demonstrated. The powder composites, consisting of micrometer-sized stainless steel powder, homogenously decorated with nano-scaled Y2O3 powder particles, are manufactured by laser processing of colloids and electrostatic deposition. Consolidated by laser metal deposition and selective laser melting, the resulting specimens show superior mechanical properties at elevated temperatures, caused by the nano-sized, homogenously distributed dispersoids. © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
    view abstractdoi: 10.1016/j.procir.2018.08.093
  • 2018 • 213 Laser metal deposition of lattice structures by columnar built-up
    Sharma, M. and Dobbelstein, H. and Thiele, M. and Ostendorf, A.
    Procedia CIRP 74 218-221 (2018)
    Independent of the geometrical complexity of a laser metal deposition component, the fundamental geometrical element is given by basic weld seams most of the times. These weld seams are deposited on a surface area and therefore not suitable to generate lattice structures. In this study, it is successfully demonstrated that basic spot welds can be used to achieve a vertical columnar built-up of pillars. Tilting of these pillars was used to merge them or to form forks. In that way, laser metal deposition of a lattice structure was implemented. © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
    view abstractdoi: 10.1016/j.procir.2018.08.098
  • 2018 • 212 Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor
    Bendt, G. and Gassa, S. and Rieger, F. and Jooss, C. and Schulz, S.
    Journal of Crystal Growth 490 77-83 (2018)
    Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature. © 2018 Elsevier B.V.
    view abstractdoi: 10.1016/j.jcrysgro.2018.03.021
  • 2018 • 211 Measuring displacement currents during fabrication of Mg/Si Schottky diodes due to band-bending evolution
    Hagemann, U. and Huba, K. and Nienhaus, H.
    Journal of Applied Physics 124 (2018)
    The generation of a rectifying metal-semiconductor contact forms a charge depletion layer in the semiconductor surface. The resulting space charge leads to a surface band bending and the formation of a Schottky barrier. The present study introduces an unconventional method to measure and monitor the surface band bending during metal atom deposition by recording the displacement current between the metal and the semiconductor. Magnesium atoms are evaporated at 130 K onto hydrogen-passivated p-Si(001) surfaces. During deposition, the time-dependent reverse current in the diode is detected. A sharp current peak of a few nA can be attributed to the displaced charge when the first monolayers of the Mg film are formed. The currents are proportional to the number of Mg atoms impinging onto the surface. Integrating the observed displacement currents over time yields the total space charge densities at the interface between 8 and 23 nC/cm 2. This is in excellent agreement with the calculated value for a Schottky barrier of 0.5 eV and assuming flatband condition for hydrogen-passivated Si(001) surfaces. © 2018 Author(s).
    view abstractdoi: 10.1063/1.5055206
  • 2018 • 210 Metalorganic Vapor-Phase Epitaxy Growth Parameters for Two-Dimensional MoS2
    Marx, M. and Grundmann, A. and Lin, Y.-R. and Andrzejewski, D. and Kümmell, T. and Bacher, G. and Heuken, M. and Kalisch, H. and Vescan, A.
    Journal of Electronic Materials 47 910-916 (2018)
    The influence of the main growth parameters on the growth mechanism and film formation processes during metalorganic vapor-phase epitaxy (MOVPE) of two-dimensional MoS2 on sapphire (0001) have been investigated. Deposition was performed using molybdenum hexacarbonyl and di-tert-butyl sulfide as metalorganic precursors in a horizontal hot-wall MOVPE reactor from AIXTRON. The structural properties of the MoS2 films were analyzed by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. It was found that a substrate prebake step prior to growth reduced the nucleation density of the polycrystalline film. Simultaneously, the size of the MoS2 domains increased and the formation of parasitic carbonaceous film was suppressed. Additionally, the influence of growth parameters such as reactor pressure and surface temperature is discussed. An upper limit for these parameters was found, beyond which strong parasitic deposition or incorporation of carbon into MoS2 took place. This carbon contamination became significant at reactor pressure above 100 hPa and temperature above 900°C. © 2017, The Minerals, Metals & Materials Society.
    view abstractdoi: 10.1007/s11664-017-5937-3
  • 2018 • 209 Monte Carlo simulation of column growth in plasma spray physical vapor deposition process
    Wang, P. and He, W. and Mauer, G. and Mücke, R. and Vaßen, R.
    Surface and Coatings Technology 335 188-197 (2018)
    Plasma spray-physical vapor deposition is used to produce columnar microstructure coatings under particular operating parameters. Simulations of the growth of columns were carried out through a two-dimensional Monte Carlo model. The modeling was performed using inclined vapor flux impinging onto a substrate due to shadowing effects. An incoming particle travels along a straight line and attaches itself to already deposited particles. Furthermore, the newly deposited particle will relax to a stable surrounding position along the incoming velocity direction. The modeling results predicted the linking of an oblique vapor flux and column orientation. The numerical simulations were validated in three ways. Firstly, the porosity of simulated columns was predicted and compared to that obtained in the experimental columnar microstructure of coatings. Secondly, the morphology of simulated structures is compared to that of experimental coatings produced by plasma spray physical vapor deposition. Finally, the simulated orientation of columns is compared to the experimental one. © 2017
    view abstractdoi: 10.1016/j.surfcoat.2017.12.023
  • 2018 • 208 Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: Role of carbon formation as possible deactivation pathway
    Mutz, B. and Sprenger, P. and Wang, W. and Wang, D. and Kleist, W. and Grunwaldt, J.-D.
    Applied Catalysis A: General 556 160-171 (2018)
    The methanation of CO2, as a part of the power-to-gas concept, was studied under various industrially relevant feed compositions with a focus on the formation and influence of carbonaceous species. For this purpose, 5 wt.% Ni/Al2O3, 5 wt.% Ni3Fe/Al2O3 and 3.4 wt.% NiRh0.1/Al2O3 catalysts were prepared and characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), scanning transmission electron microscopy (STEM) combined with energy-dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS). During the methanation of CO2, the Ni3Fe catalyst emerged as the most active and selective catalyst in the mid-temperature regime (300–350 °C). At 400 °C, all three tested catalysts showed high conversion of CO2 (67–75%; Ni > Ni3Fe > NiRh0.1) and selectivity towards CH4 (95–98%). Operando Raman spectroscopy was applied to elucidate the possible influence of carbonaceous species on the performance of the catalysts. Notably, no carbon deposition was observed under various feed compositions, even in CO2 or CO2/CH4 mixtures, e.g. as provided by biogas plants. Only in pure CH4 atmosphere an intensive carbon deposition with graphitic structure occurred as uncovered by operando Raman spectroscopy. Experiments in the lab-scale reactor and a spectroscopic microreactor could be correlated and revealed a strong catalytic deactivation of the carbon covered catalysts including a pronounced shift of the selectivity towards CO. The initial activity could be recovered after reactivation in H2 at elevated temperatures, which led to a removal of the deposits especially from the metal particles. Raman spectroscopy, supported by the results from high-resolution transmission electron microscopy (HRTEM) and EELS, revealed that carbon remained on the support material. The latter did not have any significant influence on the catalytic activity and could be removed in an oxidizing atmosphere. © 2018
    view abstractdoi: 10.1016/j.apcata.2018.01.026
  • 2018 • 207 Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites
    Doñate-Buendía, C. and Frömel, F. and Wilms, M.B. and Streubel, R. and Tenkamp, J. and Hupfeld, T. and Nachev, M. and Gökce, E. and Weisheit, A. and Barcikowski, S. and Walther, F. and Schleifenbaum, J.H. and Gökce, B.
    Materials and Design 154 360-369 (2018)
    A new method is proposed for producing nanoparticle-metal composite powders for laser additive manufacturing of oxide-dispersion strengthened (ODS) alloys. Different composite powders containing laser-generated Y2O3 and yttrium iron garnet (YIG) nanoparticles were produced and consolidated by Laser Metal Deposition (LMD). The structural properties of the manufactured ODS alloys were analyzed, and their hardness, remnant porosity, and temperature-dependent compression behavior were characterized to study the effect of the composition and size of the nanoparticles on the structural and mechanical properties. While the structural analyses did not show significant differences between the processed samples within the limits of the characterization methods that were used, the temperature-dependent compression behavior showed an increase of up to 22 ± 11% in the high-temperature strength of the specimens that contained only 0.08 wt% of laser-generated nanoparticles. This increase is attributed to the dispersed and deagglomerated nature of the nanoparticles that were used during the powder-preparation step. © 2018 Elsevier Ltd
    view abstractdoi: 10.1016/j.matdes.2018.05.044
  • 2018 • 206 PEALD of SiO2 and Al2O3 Thin Films on Polypropylene: Investigations of the Film Growth at the Interface, Stress, and Gas Barrier Properties of Dyads
    Gebhard, M. and Mai, L. and Banko, L. and Mitschker, F. and Hoppe, C. and Jaritz, M. and Kirchheim, D. and Zekorn, C. and De Los Arcos, T. and Grochla, D. and Dahlmann, R. and Grundmeier, G. and Awakowicz, P. and Ludwig, Al. and Devi, A.
    ACS Applied Materials and Interfaces 10 7422-7434 (2018)
    A study on the plasma-enhanced atomic layer deposition of amorphous inorganic oxides SiO2 and Al2O3 on polypropylene (PP) was carried out with respect to growth taking place at the interface of the polymer substrate and the thin film employing in situ quartz-crystal microbalance (QCM) experiments. A model layer of spin-coated PP (scPP) was deposited on QCM crystals prior to depositions to allow a transfer of findings from QCM studies to industrially applied PP foil. The influence of precursor choice (trimethylaluminum (TMA) vs [3-(dimethylamino)propyl]-dimethyl aluminum (DMAD)) and of plasma pretreatment on the monitored QCM response was investigated. Furthermore, dyads of SiO2/Al2O3, using different Al precursors for the Al2O3 thin-film deposition, were investigated regarding their barrier performance. Although the growth of SiO2 and Al2O3 from TMA on scPP is significantly hindered if no oxygen plasma pretreatment is applied to the scPP prior to depositions, the DMAD process was found to yield comparable Al2O3 growth directly on scPP similar to that found on a bare QCM crystal. From this, the interface formed between the Al2O3 and the PP substrate is suggested to be different for the two precursors TMA and DMAD due to different growth modes. Furthermore, the residual stress of the thin films influences the barrier properties of SiO2/Al2O3 dyads. Dyads composed of 5 nm Al2O3 (DMAD) + 5 nm SiO2 exhibit an oxygen transmission rate (OTR) of 57.4 cm3 m-2 day-1, which correlates with a barrier improvement factor of 24 against 5 when Al2O3 from TMA is applied. © 2018 American Chemical Society.
    view abstractdoi: 10.1021/acsami.7b14916
  • 2018 • 205 PH-Dependence in facet-selective photo-deposition of metals and metal oxides on semiconductor particles
    Guo, Y. and Siretanu, I. and Zhang, Y. and Mei, B. and Li, X. and Mugele, F. and Huang, H. and Mul, G.
    Journal of Materials Chemistry A 6 7500-7508 (2018)
    Facet-engineering and the deposition of co-catalysts lead to significant improvement in efficiency of semiconductors in photocatalytic applications. Here, we demonstrate, using the specific example of bismuth-oxy-bromide (BiOBr) particles, that facet-selective, photo-induced reductive or oxidative deposition of co-catalysts onto plate-like semiconductor particles is strongly pH-dependent. High resolution atomic force microscopy and spectroscopy measurements demonstrate that the effect of pH is caused by a reversal of the surface charge of the [001] facets upon increasing pH from 3 to 9 (isoelectric point ≈5), while the side facets become increasingly negatively-charged. We discuss the effect of facet-surface-charge on particle distributions by band-bending, favoring either electron transfer and metal deposition, or hole transfer and metal-oxide deposition. This finding opens up new ways to design highly effective, photocatalytic composite architectures, containing spatially separated catalytic particles of multiple compositions. © 2018 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c8ta00781k
  • 2018 • 204 Ultrasound-mediated deposition and cytocompatibility of apatite-like coatings on magnesium alloys
    Liu, C.-N. and Böke, F. and Gebhard, M. and Devi, A. and Fischer, H. and Keller, A. and Grundmeier, G.
    Surface and Coatings Technology 345 167-176 (2018)
    A novel ultrasound-based approach for the deposition of an octacalcium phosphate (OCP) and nanocrystalline apatite (ncAp)-based coating on the magnesium alloy AZ31 as a biodegradable implant material is established. The studies consider both the structural analysis and the resulting corrosion protection and correlate the related findings with cytocompatibility. The ultrasound-based approach is shown to lead to the deposition of an OCP and ncAp-based coating with a trilayer structure on AZ31. The coatings consist of two inner compact layers and an open porous top layer. The formation of the functional OCP/ncAp coating and deposition on the AZ31 surface take place within minutes in a single processing step and do not require any pre-heating, mediators or post-deposition treatment for the achievement of corrosion protection and cytocompatibility. The obtained coatings were characterized by means of FTIR and Raman spectroscopy as well as FE-SEM and X-ray crystallography. Electrochemical impedance spectroscopy revealed corrosion inhibition especially in the initial phase after immersion in physiological electrolyte. Moreover, this corrosion protection resulted in a strongly improved cytocompatibility of AZ31 as verified by in vitro viability tests using human mesenchymal stromal cells. © 2018 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2018.03.100
  • 2018 • 203 UV-light assisted patterned metallization of textile fabrics
    Bahners, T. and Gebert, B. and Prager, A. and Hartmann, N. and Hagemann, U. and Gutmann, J.S.
    Applied Surface Science 436 1093-1103 (2018)
    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions – particles, aggregates – of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2017.12.119
  • 2018 • 202 Valence change detection in memristive oxide based heterostructure cells by hard X-ray photoelectron emission spectroscopy
    Kindsmüller, A. and Schmitz, C. and Wiemann, C. and Skaja, K. and Wouters, D.J. and Waser, R. and Schneider, C.M. and Dittmann, R.
    APL Materials 6 (2018)
    The switching mechanism of valence change resistive memory devices is widely accepted to be an ionic movement of oxygen vacancies resulting in a valence change of the metal cations. However, direct experimental proofs of valence changes in memristive devices are scarce. In this work, we have employed hard X-ray photoelectron emission microscopy (PEEM) to probe local valence changes in Pt/ZrOx/Ta memristive devices. The use of hard X-ray radiation increases the information depth, thus providing chemical information from buried layers. By extracting X-ray photoelectron spectra from different locations in the PEEM images, we show that zirconia in the active device area is reduced compared to a neighbouring region, confirming the valence change in the ZrOx film during electroforming. Furthermore, we succeeded in measuring the Ta 4f spectrum for two different resistance states on the same device. In both states, as well as outside the device region, the Ta electrode is composed of different suboxides without any metallic contribution, hinting to the formation of TaOx during the deposition of the Ta thin film. We observed a reduction of the Ta oxidation state in the low resistance state with respect to the high resistive state. This observation is contradictory to the established model, as the internal redistribution of oxygen between ZrOx and the Ta electrode during switching would lead to an oxidation of the Ta layer in the low resistance state. Instead, we have to conclude that the Ta electrode takes an active part in the switching process in our devices and that oxygen is released and reincorporated in the ZrOx/TaOx bilayer during switching. This is confirmed by the degradation of the high resistance state during endurance measurements under vacuum. © 2018 Author(s).
    view abstractdoi: 10.1063/1.5026063
  • 2018 • 201 Water assisted atomic layer deposition of yttrium oxide using tris(N,N0-diisopropyl-2-dimethylamido-guanidinato) yttrium(III): Process development, film characterization and functional properties†
    Mai, L. and Boysen, N. and Subaşı, E. and De Los Arcos, T. and Rogalla, D. and Grundmeier, G. and Bock, C. and Lu, H.-L. and Devi, A.
    RSC Advances 8 4987-4994 (2018)
    We report a new atomic layer deposition (ALD) process for yttrium oxide (Y2O3) thin films using tris(N,N0-diisopropyl-2-dimethylamido-guanidinato) yttrium(III) [Y(DPDMG)3] which possesses an optimal reactivity towards water that enabled the growth of high quality thin films. Saturative behavior of the precursor and a constant growth rate of 1.1 Å per cycle confirm the characteristic self-limiting ALD growth in a temperature range from 175 C to 250 C. The polycrystalline films in the cubic phase are uniform and smooth with a root mean squared (RMS) roughness of 0.55 nm, while the O/Y ratio of 2.0 reveal oxygen rich layers with low carbon contaminations of around 2 at%. Optical properties determined via UV/Vis measurements revealed the direct optical band gap of 5.56 eV. The valuable intrinsic properties such as a high dielectric constant make Y2O3 a promising candidate in microelectronic applications. Thus the electrical characteristics of the ALD grown layers embedded in a metal insulator semiconductor (MIS) capacitor structure were determined which resulted in a dielectric permittivity of 11, low leakage current density (z107 A cm2 at 2 MV cm1) and high electrical breakdown fields (4.0–7.5 MV cm1). These promising results demonstrate the potential of the new and simple Y2O3 ALD process for gate oxide applications. © The Royal Society of Chemistry 2018.
    view abstractdoi: 10.1039/c7ra13417g
  • 2018 • 200 Zinc stannate by reactive laser sintering
    Mackert, V. and Gebauer, J.S. and Notthoff, C. and Winterer, M.
    Applied Surface Science 457 1174-1180 (2018)
    A novel procedure for producing polycrystalline zinc stannate (Zn 2 SnO 4 , ZTO) films is presented in this paper. Nanocrystals of zinc oxide (ZnO) and tin dioxide (SnO 2 ) are prepared by chemical vapor synthesis (CVS) and processed into stable aqueous dispersions including mixed colloids. These colloids are transformed into nanostructured films via electrophoretic deposition where the mixed colloid forms a homogeneous, nanoscaled composite. Ultraviolet (UV) laser sintering of these codeposited ZnO-SnO 2 nanocrystals generates the inverse cubic spinel Zn 2 SnO 4 phase by chemical reaction on the area of interest. The effects of UV laser sintering at a wavelength of 325 nm on the nanoscaled microstructure of pure deposited films are investigated by variation of laser power and scanning speed. The microstructure of composite films is compared to a film obtained by classical reactive sintering in a furnace. High-resolution scanning electron microscopy and energy dispersive X-ray spectroscopy are used to investigate film morphology and chemical composition. Structural characterization is performed by X-ray diffraction. © 2018 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2018.06.304
  • 2017 • 199 Adhesion properties of a three-layer system based on RF-magnetron sputter deposited calcium-phosphate coating and silver nanoparticles
    Tkachev, M.S. and Melnikov, E.S. and Surmeneva, M.A. and Sharonova, A.A. and Surmenev, R.A. and Korneva, O.S. and Shulepov, I.A. and Loza, K. and Epple, M.
    Proceedings of the 11th International Forum on Strategic Technology, IFOST 2016 88-90 (2017)
    A three-layer system of hydroxyapatite (HA) coating - Ag nanoparticles - HA coating with an overall thickness of 1.2 μm was prepared. The radio-frequency (RF) magnetron sputtering was used to prepare the first layer of hydroxyapatite coating on titanium. Then electrophoretic deposition of silver nanoparticles on the prepared HA layer was done followed by deposition of the second layer of HA by RFmagnetron sputtering. The adhesion strength was investigated by the scratch test method. Scanning electron microscopy and optical microscopy allowed to qualitatively estimate the deformation mechanisms of the biocomposites after the scratch test. © 2016 IEEE.
    view abstractdoi: 10.1109/IFOST.2016.7884197
  • 2017 • 198 Alkaline fuel cell with nitride membrane
    Sun, S.-H. and Pilaski, M. and Wartmann, J. and Letzkus, F. and Funke, B. and Dura, G. and Heinzel, A.
    Proceedings of SPIE - The International Society for Optical Engineering 10246 (2017)
    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments. © 2017 SPIE.
    view abstractdoi: 10.1117/12.2265689
  • 2017 • 197 Antibacterial activity of microstructured sacrificial anode thin films by combination of silver with platinum group elements (platinum, palladium, iridium)
    Köller, M. and Bellova, P. and Javid, S.M. and Motemani, Y. and Khare, C. and Sengstock, C. and Tschulik, K. and Schildhauer, T.A. and Ludwig, Al.
    Materials Science and Engineering C 74 536-541 (2017)
    Five different Ag dots arrays (16 to 400dots/mm2) were fabricated on a continuous platinum, palladium, or iridium thin film and for comparison also on titanium film by sputter deposition and photolithographic patterning. To analyze the antibacterial activity of these microstructured films Staphylococcus aureus (S. aureus) were placed onto the array surfaces and cultivated overnight. To analyze the viability of planktonic as well as surface adherent bacteria, the applied bacterial fluid was subsequently aspirated, plated on blood agar plates and adherent bacteria were detected by fluorescence microscopy. A particular antibacterial effect towards . S. aureus was induced by Ag dot arrays on each of the platinum group thin film (sacrificial anode system for Ag) in contrast to Ag dot arrays fabricated on the Ti thin films (non-sacrificial anode system for Ag). Among platinum group elements the Ir-Ag system exerted the highest antibacterial activity which was accompanied by most advanced dissolution of the Ag dots and Ag ion release compared to Ag dots on Pt or Pd. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.msec.2016.12.075
  • 2017 • 196 Atomic/molecular layer deposition of hybrid inorganic–organic thin films from erbium guanidinate precursor
    Mai, L. and Giedraityte, Z. and Schmidt, M. and Rogalla, D. and Scholz, S. and Wieck, A.D. and Devi, A. and Karppinen, M.
    Journal of Materials Science 52 6216-6224 (2017)
    Luminescent erbium-based inorganic–organic hybrid materials play an important role in many frontier nano-sized applications, such as amplifiers, detectors and OLEDs. Here, we demonstrate the possibility to fabricate high-quality thin films comprising both erbium and an appropriate organic molecule as a luminescence sensitizer utilizing the combined atomic layer deposition and molecular layer deposition (ALD/MLD) technique. We employ tris(N,N′-diisopropyl-2-dimethylamido guanidinato)erbium(III) [Er(DPDMG)3] together with 3,5-pyridine dicarboxylic acid as precursors. With the appreciably high film deposition rate achieved (6.4 Å cycle−1), the guanidinate precursor indeed appears as an interesting new addition to the ALD/MLD precursor variety toward novel materials. Our erbium–organic thin films showed highly promising UV absorption properties and a photoluminescence at 1535 nm for a 325-nm excitation, relevant to possible future luminescence applications. © 2017 Springer Science+Business Media New York
    view abstractdoi: 10.1007/s10853-017-0855-6
  • 2017 • 195 Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid
    Khalili, V. and Khalil-Allafi, J. and Frenzel, J. and Eggeler, G.
    Materials Science and Engineering C 71 473-482 (2017)
    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20 wt% silicon, 1 wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10 days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37 °C. The results indicate that the compact structure of hydroxyapatite-20 wt% silicon and hydroxyapatite-20 wt% silicon-1 wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. © 2016
    view abstractdoi: 10.1016/j.msec.2016.10.036
  • 2017 • 194 Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties
    Bakan, E. and Vaßen, R.
    Journal of Thermal Spray Technology 26 992-1010 (2017)
    The ceramic top coat has a major influence on the performance of the thermal barrier coating systems (TBCs). Yttria-partially-stabilized zirconia (YSZ) is the top coat material frequently used, and the major deposition processes of the YSZ top coat are atmospheric plasma spraying and electron beam physical vapor deposition. Recently, also new thermal spray processes such as suspension plasma spraying or plasma spray-physical vapor deposition have been intensively investigated for TBC top coat deposition. These new processes and particularly the different coating microstructures that can be deposited with them will be reviewed in this article. Furthermore, the properties and the intrinsic–extrinsic degradation mechanisms of the YSZ will be discussed. Following the TBC deposition processes and standard YSZ material, alternative ceramic materials such as perovskites and hexaaluminates will be summarized, while properties of pyrochlores with regard to their crystal structure will be discussed more in detail. The merits of the pyrochlores such as good CMAS resistance as well as their weaknesses, e.g., low fracture toughness, processability issues, will be outlined. © 2017, ASM International.
    view abstractdoi: 10.1007/s11666-017-0597-7
  • 2017 • 193 Characterization of DC magnetron plasma in Ar/Kr/N2 mixture during deposition of (Cr,Al)N coating
    Bobzin, K. and Bagcivan, N. and Theiß, S. and Brugnara, R. and Bibinov, N. and Awakowicz, P.
    Journal of Physics D: Applied Physics 50 (2017)
    doi: 10.1088/1361-6463/aa4ea2
  • 2017 • 192 Combinatorial synthesis and high-throughput characterization of structural and photoelectrochemical properties of Fe:WO3 nanostructured libraries
    Khare, C. and Sliozberg, K. and Stepanovich, A. and Schuhmann, W. and Ludwig, Al.
    Nanotechnology 28 (2017)
    Porous and photoelectrochemically active Fe-doped WO3 nanostructures were obtained by a combinatorial dealloying method. Two types of precursor materials libraries, exhibiting dense and nano-columnar morphology were fabricated by using two distinct magnetron sputter deposition geometries. Both libraries were subjected to combinatorial dealloying enabling preparation and screening of a large quantity of compositions having different nanostructures. This approach allows identifying materials with interesting photoelectrochemical characteristics. The dealloying process selectively dissolved Fe from the composition gradient precursor W-Fe materials library, resulting in formation of monoclinic single crystalline nanoblade-like structures over the entire surface. Photoelectrochemical properties of nanostructured Fe:WO3 films were found to be composition-dependent. The measurement region doped with ∼1.7 at % Fe and a film thickness of ∼ 900-1100 nm displayed highly porous WO3 nanostructures and exhibited the highest photocurrent density of ∼ 72 μA cm-2. This enhanced photocurrent density is attributed to the decreased bandgap values, suppressed recombination of electron-hole pairs, improved light absorption as well as efficient charge transport in the highly porous Fe-doped film with single crystalline WO3 nanoblades. © 2017 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6528/aa6964
  • 2017 • 191 Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing
    Jägle, E.A. and Sheng, Z. and Kürnsteiner, P. and Ocylok, S. and Weisheit, A. and Raabe, D.
    Materials 10 (2017)
    Maraging steels are used to produce tools by Additive Manufacturing (AM) methods such as Laser Metal Deposition (LMD) and Selective Laser Melting (SLM). Although it is well established that dense parts can be produced by AM, the influence of the AM process on the microstructure-in particular the content of retained and reversed austenite as well as the nanostructure, especially the precipitate density and chemistry, are not yet explored. Here, we study these features using microhardness measurements, Optical Microscopy, Electron Backscatter Diffraction (EBSD), Energy Dispersive Spectroscopy (EDS), and Atom Probe Tomography (APT) in the as-produced state and during ageing heat treatment. We find that due to microsegregation, retained austenite exists in the as-LMD- and as-SLM-produced states but not in the conventionally-produced material. The hardness in the as-LMD-produced state is higher than in the conventionally and SLM-produced materials, however, not in the uppermost layers. By APT, it is confirmed that this is due to early stages of precipitation induced by the cyclic re-heating upon further deposition-i.e., the intrinsic heat treatment associated with LMD. In the peak-aged state, which is reached after a similar time in all materials, the hardness of SLM- and LMD-produced material is slightly lower than in conventionally-produced material due to the presence of retained austenite and reversed austenite formed during ageing. © 2017 by the authors.
    view abstractdoi: 10.3390/ma10010008
  • 2017 • 190 Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition
    Awd, M. and Tenkamp, J. and Hirtler, M. and Siddique, S. and Bambach, M. and Walther, F.
    Materials 11 (2017)
    The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy®, has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al3-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (μ-CT) platform. The investigations show that Scalmalloy® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength. © 2017 by the author.
    view abstractdoi: 10.3390/ma11010017
  • 2017 • 189 Diagnostics of Cold-Sprayed Particle Velocities Approaching Critical Deposition Conditions
    Mauer, G. and Singh, R. and Rauwald, K.-H. and Schrüfer, S. and Wilson, S. and Vaßen, R.
    Journal of Thermal Spray Technology 1-11 (2017)
    In cold spraying, the impact particle velocity plays a key role for successful deposition. It is well known that only those particles can achieve successful bonding which have an impact velocity exceeding a particular threshold. This critical velocity depends on the thermomechanical properties of the impacting particles at impacting temperature. The latter depends on the gas temperature in the torch but also on stand-off distance and gas pressure. In the past, some semiempirical approaches have been proposed to estimate particle impact and critical velocities. Besides that, there are a limited number of available studies on particle velocity measurements in cold spraying. In the present work, particle velocity measurements were performed using a cold spray meter, where a laser beam is used to illuminate the particles ensuring sufficiently detectable radiant signal intensities. Measurements were carried out for INCONEL® alloy 718-type powders with different particle sizes. These experimental investigations comprised mainly subcritical spray parameters for this material to have a closer look at the conditions of initial deposition. The critical velocities were identified by evaluating the deposition efficiencies and correlating them to the measured particle velocity distributions. In addition, the experimental results were compared with some values estimated by model calculations. © 2017 ASM International
    view abstractdoi: 10.1007/s11666-017-0596-8
  • 2017 • 188 Diffusion across the glass transition in silicate melts: Systematic correlations, new experimental data for Sr and Ba in calcium-aluminosilicate glasses and general mechanisms of ionic transport
    Fanara, S. and Sengupta, P. and Becker, H.-W. and Rogalla, D. and Chakraborty, S.
    Journal of Non-Crystalline Solids 455 6-16 (2017)
    Viscosity and diffusivity of silicate melts and glasses are related to each other through relaxation timescales. The systematic is explored based on published data. Diffusion coefficients for Sr and Ba were measured in calcium aluminosilicate glasses at conditions near the glass/supercooled liquid boundary in temperature – time space making use of thin film technology and Rutherford Backscattering Spectroscopy (RBS) to measure concentration profiles on nanoscales. These data extend the range of published diffusion coefficients and combined with the systematic noted above allow the nature of change of diffusion coefficients across the glass transition region to be studied. Activation energies for diffusion in the glassy state (~ 360 kJ/mol) are higher than in the molten liquid (~ 213 kJ/mol). A defect based model of glass transition derived by Ojovan and coworkers, where attainment of a percolation threshold of configuron-type defects accounts for the glass – liquid transition, can explain the observed diffusion behaviour. Data treatment using this model yields a defect formation enthalpy of ~ 146 kJ/mol and a migration enthalpy of ~ 213 kJ/mol. The results of this study provide generalized expressions for the prediction of diffusion coefficients of cations in silicate melts for any composition at any temperature. © 2016
    view abstractdoi: 10.1016/j.jnoncrysol.2016.10.013
  • 2017 • 187 Droplet deposition in radial turbines
    Schuster, S. and Benra, F.-K. and Brillert, D.
    European Journal of Mechanics, B/Fluids 61 289-296 (2017)
    In this paper droplet deposition in radial turbines used for waste heat recovery in the chemical industry is investigated. During expansion, the water vapour in the working fluid undergoes sub-cooling, at a certain point a cloud of fine droplets begins to form and a fraction of these droplets is deposited on the blade surfaces. In this paper, droplet deposition is calculated by incorporating turbulent fluctuations and Brownian motion into a Lagrange particle tracking algorithm. After introducing the calculation approach, a validation of the enhanced CFD code by means of deposition experiments in a straight tube is presented. For a radial turbine, the functional relation between the location of maximum sub-cooling and the onset of droplet deposition is pointed out. Even though the validation of the numerical code is quite satisfactory, some uncertainties arise from the nucleation modelling. This uncertainty will be addressed in the publication as well. The paper concludes with suggestions on how to increase the reliability of the calculations. © 2016 Elsevier Masson SAS
    view abstractdoi: 10.1016/j.euromechflu.2016.09.002
  • 2017 • 186 Effects of Post Annealing Treatments on the Interfacial Chemical Properties and Band Alignment of AlN/Si Structure Prepared by Atomic Layer Deposition
    Sun, Long and Lu, Hong-Liang and Chen, Hong-Yan and Wang, Tao and Ji, Xin-Ming and Liu, Wen-Jun and Zhao, Dongxu and Devi, Anjana and Ding, Shi-Jin and Zhang, David Wei
    Nanoscale Research Letters 12 102 (2017)
    The influences of annealing temperature in N-2 atmosphere on interfacial chemical properties and band alignment of AlN/Si structure deposited by atomic layer deposition have been investigated based on x-ray photoelectron spectroscopy and spectroscopic ellipsometry. It is found that more oxygen incorporated into AlN film with the increasing annealing temperature, resulting from a little residual H2O in N-2 atmosphere reacting with AlN film during the annealing treatment. Accordingly, the Si-N bonding at the interface gradually transforms to Si-O bonding with the increasing temperature due to the diffusion of oxygen from AlN film to the Si substrate. Specially, the Si-O-AI bonding state can be detected in the 900 degrees C-annealed sample. Furthermore, it is determined that the band gap and valence band offset increase with increasing annealing temperature.
    view abstractdoi: 10.1186/s11671-016-1822-x
  • 2017 • 185 Effects of substrate roughness and spray-angle on deposition behavior of cold-sprayed Inconel 718
    Singh, R. and Rauwald, K.-H. and Wessel, E. and Mauer, G. and Schruefer, S. and Barth, A. and Wilson, S. and Vassen, R.
    Surface and Coatings Technology 319 249-259 (2017)
    In this study, Inconel 718 powder particles were successfully cold-sprayed on Inconel 718 substrate by using nitrogen gas for a repair application of aero engine components. The effects of substrate roughness and spray-angle on the deposition behavior of Inconel 718 particles were investigated. It has been found that the deposition behavior of Inconel 718 powder on Inconel 718 substrates is highly influenced by substrate surface roughness. Single powder particle interaction with substrates of different roughness showed that plastic deformation and interfacial material mixing is higher if powder particles interact with substrates of higher roughness. Consequently, substrates with lower roughness demonstrated many abnormalities (e.g. cracks, peeling-off) during the deposition. Substrate roughness is limited to influence the deposition efficiency of the first few layers. Besides, it is also observed that particle deformation and coating quality are significantly affected by the spray-angle because of asymmetric deformation of the particle due to additional tangential momentum. Moreover, it is observed that deposition efficiency is reduced with a decrease in spray-angle, while the coating porosity and coating roughness show an inverse trend. Furthermore, the effects of three input parameters, namely substrate preparation, spray angle and stand-off distance, on four outputs (responses), such as thickness, roughness, porosity and Vickers-hardness of the coating were studied using non-linear statistical regression analysis. The above mentioned four outputs were found to be significantly dependent on substrate preparation and spray-angle. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2017.03.072
  • 2017 • 184 Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses
    Ringleb, F. and Eylers, K. and Teubner, T. and Schramm, H.-P. and Symietz, C. and Bonse, J. and Andree, S. and Heidmann, B. and Schmid, M. and Krüger, J. and Boeck, T.
    Applied Surface Science 418 548-553 (2017)
    Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2016.11.135
  • 2017 • 183 Hybrid biocomposites based on titania nanotubes and a hydroxyapatite coating deposited by RF-magnetron sputtering: Surface topography, structure, and mechanical properties
    Chernozem, R.V. and Surmeneva, M.A. and Krause, B. and Baumbach, T. and Ignatov, V.P. and Tyurin, A.I. and Loza, K. and Epple, M. and Surmenev, R.A.
    Applied Surface Science 426 229-237 (2017)
    In this study, biocomposites based on porous titanium oxide structures and a calcium phosphate (CaP) or hydroxyapatite (HA) coating are described and prepared. Nanotubes (NTs) with different pore dimensions were processed using anodic oxidation of Ti substrates in a NH4F-containing electrolyte solution at anodization voltages of 30 and 60 V with a DC power supply. The external diameters of the nanotubes prepared at 30 V and 60 V were 53 ± 10 and 98 ± 16 nm, respectively. RF-magnetron sputtering of the HA target in a single deposition run was performed to prepare a coating on the surface of TiO2 NTs prepared at 30 and 60 V. The thickness of the CaP coating deposited on the mirror-polished Si substrate in the same deposition run with TiO2 NTs was determined by optical ellipsometry (SE) 95 ± 5 nm. Uncoated and CaP-coated NTs were annealed at 500 °C in air. Afterwards, the presence of TiO2 (anatase) was observed. The scanning electron microscopy (SEM), X-ray diffraction (XRD), photoelectron spectroscopy (XPS) and nanoindentation results revealed the influence that the NT dimensions had on the CaP coating deposition process. The tubular surfaces of the NTs were completely coated with the HA coating when prepared at 30 V, and no homogeneous CaP coating was observed when prepared at 60 V. The XRD patterns show peaks assigned to crystalline HA only for the coated TiO2 NTs prepared at 30 V. High-resolution XPS spectra show binding energies (BE) of Ca 2p, P 2p and O 1s core-levels corresponding to HA and amorphous calcium phosphate on TiO2 NTs prepared at 30 V and 60 V, respectively. Fabrication of TiO2 NTs results in a significant decrease to the elastic modulus and nanohardness compared to the Ti substrate. The porous structure of the NTs causes an increase in the elastic strain to failure of the coating (H/E) and the parameter used to describe the resistance of the material to plastic deformation (H3/E2) at the nanoscale level compared to the Ti substrate. Furthermore, only the HA coating on the NTs exhibits a significantly increased H/E ratio and H3/E2 factor compared to the NTs and Ti substrate. Increases in resistance to penetration for the indenter were also observed for HA-coated TiO2 NTs prepared at 30 V compared to uncoated and CaP-coated NTs prepared at 60 V. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2017.07.199
  • 2017 • 182 Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating
    Surmeneva, M.A. and Sharonova, A.A. and Chernousova, S. and Prymak, O. and Loza, K. and Tkachev, M.S. and Shulepov, I.A. and Epple, M. and Surmenev, R.A.
    Colloids and Surfaces B: Biointerfaces 156 104-113 (2017)
    A three-layer system of nanocrystalline hydroxyapatite (first layer; 1000 nm thick), silver nanoparticles (second layer; 1.5 μg Ag cm−2) and calcium phosphate (third layer, either 150 or 1000 nm thick) on titanium was prepared by a combination of electrophoretic deposition of silver nanoparticles and the deposition of calcium phosphate by radio frequency magnetron sputtering. Scanning electron microscopy showed that the silver nanoparticles were evenly distributed over the surface. The adhesion of multilayered coating on the substrate was evaluated using the scratch test method. The resistance to cracking and delamination indicated that the multilayered coating has good resistance to contact damage. The release of silver ions from the hydroxyapatite/silver nanoparticle/calcium phosphate system into the phosphate-buffered saline (PBS) solution was measured by atomic absorption spectroscopy (AAS). Approximately one-third of the incorporated silver was released after 3 days immersion into PBS, indicating a total release time of the order of weeks. There were no signs of cracks on the surface of the coating after immersion after various periods, indicating the excellent mechanical stability of the multilayered coating in the physiological environment. An antimicrobial effect against Escherichia coli was found for a 150 nm thick outer layer of the calcium phosphate using a semi-quantitative turbidity test. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.colsurfb.2017.05.016
  • 2017 • 181 Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium
    Breilmann, W. and Maszl, C. and Hecimovic, A. and Von Keudell, A.
    Journal of Physics D: Applied Physics 50 (2017)
    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process. © 2017 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6463/aa5bfc
  • 2017 • 180 Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene
    Jaritz, M. and Hopmann, C. and Behm, H. and Kirchheim, D. and Wilski, S. and Grochla, D. and Banko, L. and Ludwig, Al. and Böke, M. and Winter, J. and Bahre, H. and Dahlmann, R.
    Journal of Physics D: Applied Physics 50 (2017)
    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiOx) films. Plasmas for the deposition of SiOx are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiOx coating are used as a means to protect the substrate from the oxidative SiOx coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings' residual stress. In a PP/SiOCH/SiOx-multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion. © 2017 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6463/aa8798
  • 2017 • 179 Influence of rotational speed in the friction surfacing of titanium grade 1 on Ti-6Al-4V
    Do Vale, N.L. and Fitseva, V. and Hanke, S. and Filho, S.L.U. and Dos Santos, J.F.
    Materials Research 20 830-835 (2017)
    Titanium Grade 1 was deposited on Ti-6Al-4V, 2 mm thickness, by Friction Surfacing. The process parameters were rotational speed, deposition speed and consumption rate. Only the rotational speed was varied in order to evaluate the influence of this parameter on the coatings generated. The applicability of the process has been described for a large number of materials, although the depositions of titanium alloys are still not widely studied. The objective is to investigate the effects of the rotational speed on the coatings' geometry and microstructural evolution. This investigation has shown that Titanium Grade 1 coatings can be deposited onto a Ti-6Al-4V by Friction Surfacing depending on the rotational speed. The coatings' surface homogeneity was influenced by the rotational speed, being inhomogeneous for the lowest speed. The coatings' thickness and width increased with enhancing this speed. The heat affected zone in the substrate corresponded to the complete thickness under the depositions. © 2017 Universidade Federal de Sao Carlos. All rights reserved.
    view abstractdoi: 10.1590/1980-5373-MR-2016-1011
  • 2017 • 178 Influence of the WC grain size on the properties of PVD/HVOF duplex coatings
    Tillmann, W. and Stangier, D. and Hagen, L. and Schröder, P. and Krabiell, M.
    Surface and Coatings Technology 328 326-334 (2017)
    Duplex coatings are an innovative approach to further improve cemented carbide surfaces in terms of tribo-mechanical properties by depositing a thin Physical Vapor Deposition (PVD) layer on top of the High Velocity Oxygen Fuel (HVOF) sprayed coating. Within this investigation, AISI M3 steel substrates were primarily coated with three different WC-12Co feedstock powders by means of HVOF spraying. The agglomerate size of all powders was constant (− 45 + 15 μm), the WC grain size was varied from conventional (carbide size 2.5 μm) over fine (carbide size 1 μm) to nanosized (carbide size 0.1 μm) carbides. Subsequently, the samples were polished prior to the deposition of a CrAlN PVD coating by means of magnetron sputtering. The aim is to evaluate the influence of the WC grain size on the CrAlN/WC-12Co duplex coating properties. It was shown that a smaller carbide grain size influences the microstructure of the CrAlN coating and causes a finer crystalline structure. Furthermore, higher compressive residual stresses occur in the duplex interlayer and the top layer when using nanosized carbides. Moreover, nanosized carbides in the HVOF coating are favorable in terms of layer adhesion, which was analyzed by means of HRC indent test and scratch test. Further enhancements are the increase in hardness and the reduction in roughness which was directly influenced by the WC grain size. Considering the obtained results, it is to conclude that a reduction of the interlayer WC grain size improves the performance of CrAlN/WC-12Co duplex coatings. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2017.08.064
  • 2017 • 177 Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack
    Rezanka, S. and Mack, D.E. and Mauer, G. and Sebold, D. and Guillon, O. and Vaßen, R.
    Surface and Coatings Technology 324 222-235 (2017)
    In modern gas turbines, highly loaded components are internally cooled and furthermore covered with thermal barrier coatings (TBCs) to withstand the harsh operating conditions with temperatures exceeding the application limit of such coatings. Under realistic operating conditions, siliceous minerals, of a calcium-magnesium-aluminum-silicate (CMAS) composition, are ingested into the turbine and deposited on the TBCs. Besides erosion, this also leads to degradation by chemical interaction. The plasma spray-physical vapor deposition (PS-PVD) process is an advanced method for manufacturing TBCs, which fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). Due to the unique plasma conditions, coatings with columnar microstructures exhibiting high strain tolerance can be created. However, because of the high amount of open porosity the resistance of such structures to CMAS and erosion attack was expected to be low. In the present work, PS-PVD TBCs were investigated in a burner rig facility under thermal gradient cycling conditions and simultaneous CMAS attack. The interactions of the PS-PVD-deposited YSZ and the CMAS melt were studied by means of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) and compared to EB-PVD coatings. Additionally, the resistance of PS-PVD TBCs to erosion is compared to APS TBCs by means of room temperature tests according to ASTM G76-13. © 2017
    view abstractdoi: 10.1016/j.surfcoat.2017.05.003
  • 2017 • 176 Investigations on the Nature of Ceramic Deposits in Plasma Spray–Physical Vapor Deposition
    He, W. and Mauer, G. and Gindrat, M. and Wäger, R. and Vaßen, R.
    Journal of Thermal Spray Technology 26 83-92 (2017)
    In Plasma Spray–Physical Vapor Deposition (PS-PVD) process, major fractions of the feedstock powder can be evaporated so that coatings are deposited mainly from the vapor phase. In this work, Computational Fluid Dynamics (CFD) results indicate that such evaporation occurs significantly in the plasma torch nozzle and even nucleation and condensation of zirconia is highly possible there. Experimental work has been performed to investigate the nature of the deposits in the PS-PVD process, in particular coatings from condensate vapor and nano-sized clusters produced at two spraying distances of 1000 mm and 400 mm. At long spraying distance, columns in the coatings have pyramidal tops and very sharp faceted microstructures. When the spraying distance is reduced to 400 mm, the tops of columns become relatively flat and a faceted structure is not recognizable. XRD patterns show obvious preferred orientations of (110) and (002) in the coatings sprayed at 400 mm but only limited texture in the coatings sprayed at 1000 mm. Meanwhile, a non-line of sight coating was also investigated, which gives an example for pure vapor deposition. Based on these analyses, a vapor and cluster depositions are suggested to further explain the formation mechanisms of high-quality columnar-structured PS-PVD thermal barrier coatings which have already shown excellent performance in cyclic lifetime test. © 2016, ASM International.
    view abstractdoi: 10.1007/s11666-016-0513-6
  • 2017 • 175 Kinetic analysis of negative power deposition in inductive low pressure plasmas
    Trieschmann, J. and Mussenbrock, T.
    Plasma Sources Science and Technology 26 (2017)
    Negative power deposition in low pressure inductively coupled plasmas (ICPs) is investigated by means of an analytical model which couples Boltzmann's equation and the quasi-stationary Maxwell's equations. Exploiting standard Hilbert space methods an explicit solution for both, the electric field and the distribution function of the electrons for a bounded discharge configuration subject to an unsymmetrical excitation is found for the first time. The model is applied to a low pressure ICP discharge. In this context particularly the anomalous skin effect and the effect of phase mixing is discussed. The analytical solution is compared with results from electromagnetic full wave particle in cell simulations. Excellent agreement between the analytical and the numerical results is found. © 2017 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6595/aa51f2
  • 2017 • 174 Liquid filtration of nanoparticles through track-etched membrane filters under unfavorable and different ionic strength conditions: Experiments and modeling
    Lee, H. and Segets, D. and Süß, S. and Peukert, W. and Chen, S.-C. and Pui, D.Y.H.
    Journal of Membrane Science 524 682-690 (2017)
    Nanoparticle deposition experiments under unfavorable conditions were conducted experimentally and theoretically. The 0.2 and 0.4 µm rated track-etched membrane filters were challenged with 60, 100, 147, 220, 350 and 494 nm polystyrene latex (PSL) particles with different ionic strengths ranging from 0.005 to 0.05 M. The capillary tube model, with replacing the viscosity of air to water, was used to estimate the initial efficiency, or the transport efficiency of the particles to the filter surface, which was corrected in a second step by allowing the detachment of the nanoparticles according to the sum of adhesive and hydrodynamic torques. The adhesive torques were derived from surface interactions accessed by the extended DLVO theory. Calculation results showed that the adhesive torque of a particle located in the calculated primary minimum was slightly larger than the hydrodynamic torque, resulting in particle deposition. However, experimental data clearly indicated that detachment occurred. This could only be explained by the presence of additional hydration forces, leading to a larger separation which became relevant at high ionic strengths. By including hydration into our theoretical framework, experiment and theory were in very good agreement under all different ionic strength conditions. The findings allow a basic understanding of surface interactions between nanoparticles and membranes in micro- and ultra-filtration applications for drinking water production, wastewater treatment and particle free water production in industries. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.memsci.2016.11.023
  • 2017 • 173 Low temperature growth of gallium oxide thin films via plasma enhanced atomic layer deposition
    O'Donoghue, R. and Rechmann, J. and Aghaee, M. and Rogalla, D. and Becker, H.-W. and Creatore, M. and Wieck, A.D. and Devi, A.
    Dalton Transactions 46 16551-16561 (2017)
    Herein we describe an efficient low temperature (60-160 °C) plasma enhanced atomic layer deposition (PEALD) process for gallium oxide (Ga2O3) thin films using hexakis(dimethylamido)digallium [Ga(NMe2)3]2 with oxygen (O2) plasma on Si(100). The use of O2 plasma was found to have a significant improvement on the growth rate and deposition temperature when compared to former Ga2O3 processes. The process yielded the second highest growth rates (1.5 Å per cycle) in terms of Ga2O3 ALD and the lowest temperature to date for the ALD growth of Ga2O3 and typical ALD characteristics were determined. From in situ quartz crystal microbalance (QCM) studies and ex situ ellipsometry measurements, it was deduced that the process is initially substrate-inhibited. Complementary analytical techniques were employed to investigate the crystallinity (grazing-incidence X-ray diffraction), composition (Rutherford backscattering analysis/nuclear reaction analysis/X-ray photoelectron spectroscopy), morphology (X-ray reflectivity/atomic force microscopy) which revealed the formation of amorphous, homogeneous and nearly stoichiometric Ga2O3 thin films of high purity (carbon and nitrogen <2 at.%) under optimised process conditions. Tauc plots obtained via UV-Vis spectroscopy yielded a band gap of 4.9 eV and the transmittance values were more than 80%. Upon annealing at 1000 °C, the transformation to oxygen rich polycrystalline β-gallium oxide took place, which also resulted in the densification and roughening of the layer, accompanied by a slight reduction in the band gap. This work outlines a fast and efficient method for the low temperature ALD growth of Ga2O3 thin films and provides the means to deposit Ga2O3 upon thermally sensitive polymers like polyethylene terephthalate. © 2017 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c7dt03427j
  • 2017 • 172 Low-Temperature Atomic Layer Deposition of Cobalt Oxide as an Effective Catalyst for Photoelectrochemical Water-Splitting Devices
    Kim, J. and Iivonen, T. and Hämäläinen, J. and Kemell, M. and Meinander, K. and Mizohata, K. and Wang, L. and Räisänen, J. and Beranek, R. and Leskelä, M. and Devi, A.
    Chemistry of Materials 29 5796-5805 (2017)
    We have developed a low-temperature atomic layer deposition (ALD) process for depositing crystalline and phase pure spinel cobalt oxide (Co3O4) films at 120 °C using [Co(tBu2DAD)2] and ozone as coreagent. X-ray diffraction, UV-vis spectroscopy, atomic force microscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis were performed to characterize the structure and properties of the films. The as-deposited Co3O4 films are crystalline with a low amount of impurities (<2% C and <5% H) despite low deposition temperatures. Deposition of Co3O4 onto thin TiO2 photoanodes (100 nm) for water oxidation resulted in 30% improvement of photocurrent (after 10 ALD cycles yielding small Co3O4 particles) as compared to pristine TiO2 films), and exhibited no detrimental effects on photocurrent response up to 300 deposition cycles (approximately 35 nm thick films), demonstrating the applicability of the developed ALD process for deposition of effective catalyst particles and layers in photoelectrochemical water-splitting devices. © 2017 American Chemical Society.
    view abstractdoi: 10.1021/acs.chemmater.6b05346
  • 2017 • 171 Manufacturing of hard composite materials on Fe-base with oxide particles
    Brust, S. and Röttger, A. and Kimm, J. and Usta, E. and Theisen, W.
    Key Engineering Materials 742 KEM 106-112 (2017)
    Metal matrix composites (MMC) are often applied to tool surfaces to increase resistance to wear and tear. However, some matrix and particle materials such as Ni, Co, WC or TiC are expensive and partly classified as critical elements. With respect to tribo-mechanical properties, Fe-alloys reinforced with oxide particles are promising compound materials to produce wear-resistant MMC with low-cost and readily available materials. However, thus far the technical application of such MMCs is limited due to poor wettability of the oxides by Fe-base melts and an associated weak bonding between the oxide particles and the metal matrix phases. In this work two novel production techniques (namely pre-metallization and active sintering) are introduced, which improve the wettability and interfacial reactions between both materials and therefore enable supersolidus liquid-phase sintering (SLPS) of the MMC. For the first technique the oxide particles are pre-metallized by depositing a thin film of TiN on the surfaces. The second technique is called active sintering. For this technique the alloy design is adapted from active brazing, so that wettability of the oxide particles by the alloy-melt is increased. The resulting effects of these techniques are investigated using wetting and sintering experiments, and are analyzed with respect to the developed microstructures and interfacial reactions between the oxide particles and the metallic phases. © 2017 Trans Tech Publications, Switzerland.
    view abstractdoi: 10.4028/www.scientific.net/KEM.742.106
  • 2017 • 170 Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD)
    Marcano, D. and Mauer, G. and Vaßen, R. and Weber, A.
    Surface and Coatings Technology 318 170-177 (2017)
    In the present work, a metal supported SOFC half-cell was fabricated by means of plasma spray. As support, a Fe-Cr alloy with a porous structure was used. The anode and electrolyte were applied using atmospheric plasma spray (APS) and plasma spray-physical vapor deposition (PS-PVD), respectively. A standard Ni/YSZ (coat mix) powder was used for the anode and the cathode layer consisted of a screen-printed La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) non-sintered paste. The development of a thin, dense, gas-tight 8YSZ electrolyte was the key issue of this work. Analysis of microstructure, phases, and gas-tightness were carried out for various processing conditions. Different parameters were varied, such as: powder feed rate and carrier gas flow rate, robot speed, spraying distance and plasma gas composition. A partially reduced anode coating with 9% porosity and a gas-tight 26μm electrolyte layer were obtained. Such an assembly was air-tight and delivered a cell with an acceptable open circuit voltage (OCV) and an excellent performance of 1A/cm2 at 800C and 0.7V. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2016.10.088
  • 2017 • 169 Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
    Kürnsteiner, P. and Wilms, M.B. and Weisheit, A. and Barriobero-Vila, P. and Jägle, E.A. and Raabe, D.
    Acta Materialia 129 52-60 (2017)
    Due to the layer-by-layer build-up of additively manufactured parts, the deposited material experiences a cyclic re-heating in the form of a sequence of temperature pulses. In the current work, this “intrinsic heat treatment (IHT)” was exploited to induce the precipitation of NiAl nanoparticles in an Fe-19Ni-xAl (at%) model maraging steel, a system known for rapid clustering. We used Laser Metal Deposition (LMD) to synthesize compositionally graded specimens. This allowed for the efficient screening of effects associated with varying Al contents ranging from 0 to 25 at% and for identifying promising concentrations for further studies. Based on the existence of the desired martensitic matrix, an upper bound for the Al concentration of 15 at% was defined. Owing to the presence of NiAl precipitates as observed by Atom Probe Tomography (APT), a lower bound of 3–5 at% Al was established. Within this concentration window, increasing the Al concentration gave rise to an increase in hardness by 225 HV due to an exceptionally high number density of 1025 NiAl precipitates per m3, as measured by APT. This work demonstrates the possibility of exploiting the IHT of the LMD process for the production of samples that are precipitation strengthened during the additive manufacturing process without need for any further heat treatment. © 2017
    view abstractdoi: 10.1016/j.actamat.2017.02.069
  • 2017 • 168 Molecular Engineering of MnII Diamine Diketonate Precursors for the Vapor Deposition of Manganese Oxide Nanostructures
    Maccato, C. and Bigiani, L. and Carraro, G. and Gasparotto, A. and Seraglia, R. and Kim, J. and Devi, A. and Tabacchi, G. and Fois, E. and Pace, G. and Di Noto, V. and Barreca, D.
    Chemistry - A European Journal 23 17954-17963 (2017)
    Molecular engineering of manganese(II) diamine diketonate precursors is a key issue for their use in the vapor deposition of manganese oxide materials. Herein, two closely related β-diketonate diamine MnII adducts with different fluorine contents in the diketonate ligands are examined. The target compounds were synthesized by a simple procedure and, for the first time, thoroughly characterized by a joint experimental–theoretical approach, to understand the influence of the ligand on their structures, electronic properties, thermal behavior, and reactivity. The target compounds are monomeric and exhibit a pseudo-octahedral coordination of the MnII centers, with differences in their structure and fragmentation processes related to the ligand nature. Both complexes can be readily vaporized without premature side decompositions, a favorable feature for their use as precursors for chemical vapor deposition (CVD) or atomic layer deposition applications. Preliminary CVD experiments at moderate growth temperatures enabled the fabrication of high-purity, single-phase Mn3O4 nanosystems with tailored morphology, which hold great promise for various technological applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/chem.201703423
  • 2017 • 167 New amidinate complexes of indium(III): Promising CVD precursors for transparent and conductive In2O3 thin films
    Gebhard, M. and Hellwig, M. and Kroll, A. and Rogalla, D. and Winter, M. and Mallick, B. and Ludwig, Ar. and Wiesing, M. and Wieck, A.D. and Grundmeier, G. and Devi, A.
    Dalton Transactions 46 10220-10231 (2017)
    For the first time, synthesis of two new amidinate-ligand comprising heteroleptic indium complexes, namely [InCl(amd)2] (1) and [InMe(amd)2] (2), via salt-metathesis and their detailed characterization is reported. For comparison, the earlier reported homoleptic tris-amidinate [In(amd)3] (3) was also synthesized and analyzed in detail especially with respect to the thermal properties and molecular crystal structure analysis which are reported here for the first time. From nuclear magnetic resonance spectroscopy (NMR) and single-crystal X-ray diffraction (XRD), all three compounds were found to be monomeric with C2 (compound 1 and 2) and C3 symmetry (compound 3). Both halide-free compounds 2 and 3 were evaluated regarding their thermal properties using temperature-dependent 1H-NMR, thermogravimetric analysis (TGA) and iso-TGA, revealing suitable volatility and thermal stability for their application as potential precursors for chemical vapor phase thin film deposition methods. Indeed, metalorganic chemical vapor deposition (MOCVD) experiments over a broad temperature range (400 °C-700 °C) revealed the suitability of these two compounds to fabricate In2O3 thin films in the presence of oxygen on Si, thermally grown SiO2 and fused silica substrates. The as-deposited thin films were characterized in terms of their crystallinity via X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM) and composition through complementary techniques such as Rutherford-backscattering spectrometry (RBS) in combination with nuclear reaction analysis (NRA) and X-ray photoelectron spectroscopy (XPS). From UV/Vis spectroscopy, the deposited In2O3 thin films on fused silica substrates were found to be highly transparent (T > 95% at 560 nm, compound 3). In addition, Hall measurements revealed high charge carrier densities of 1.8 × 1020 cm-3 (2) and 6.5 × 1019 cm-3 (3) with a Hall-mobility of 48 cm2 V-1 s-1 (2) and 74 cm2 V-1 s-1 (3) for the respective thin films, rendering the obtained thin films applicable as a transparent conducting oxide that could be suitable for optoelectronic applications. © 2017 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c7dt01280b
  • 2017 • 166 Photoactive Zinc Ferrites Fabricated via Conventional CVD Approach
    Peeters, D. and Taffa, D.H. and Kerrigan, M.M. and Ney, A. and Jöns, N. and Rogalla, D. and Cwik, S. and Becker, H.-W. and Grafen, M. and Ostendorf, A. and Winter, C.H. and Chakraborty, S. and Wark, M. and Devi, A.
    ACS Sustainable Chemistry and Engineering 5 2917-2926 (2017)
    Owing to its narrow band gap and promising magnetic and photocatalytic properties, thin films of zinc ferrite (ZFO, ZnFe2O4) are appealing for fabrication of devices in magnetic recording media and photoelectrochemical cells. Herein we report for the first time the fabrication of photactive zinc ferrites via a solvent free, conventional CVD approach, and the resulting ZFO layers show promise as a photocatalyst in PEC water-splitting. For large scale applications, chemical vapor deposition (CVD) routes are appealing for thin film deposition; however, very little is known about ZFO synthesis following CVD processes. The challenge in precisely controlling the composition for multicomponent material systems, such as ZFO, via conventional thermal CVD is an issue that is caused mainly by the mismatch in thermal properties of the precursors. The approach of using two different classes of precursors for zinc and iron with a close match in thermal windows led to the formation of polycrystalline spinel type ZFO. Under the optimized process conditions, it was possible to fabricate solely ZFO in the desired phase. This work demonstrates the potential of employing CVD to obtain photoactive ternary material systems in the right composition. For the first time, the application of CVD grown ZFO films for photoelectrochemical applications is being demonstrated, showing a direct band gap of 2.3 eV and exhibiting activity for visible light driven photoelectrochemical water splitting. © 2017 American Chemical Society.
    view abstractdoi: 10.1021/acssuschemeng.6b02233
  • 2017 • 165 Plasma diagnostics in dielectric deposition processes
    Schulz, C. and Rolfes, I.
    Proceedings of IEEE Sensors (2017)
    This contribution presents an in-situ plasma probe, which is capable to measure precisely in the challenging environment of deposition processes. The probe is inserted into the plasma in order to determine critical parameters, which are required for a process control. Therefore, the effects of deposited dielectric materials, which adsorb onto the probe, are investigated within numerous pseudo deposition processes by 3D electromagnetic field simulations. Here, the adsorbed material is varied in its relative permittivity and layer thickness for two different loss tangents. The corresponding evaluations demonstrate the suitability and the prospects of the probe within these simulations. The final measurements in an argon-oxygen plasma, depositing TiO2, confirm the insensitivity of the probe. © 2016 IEEE.
    view abstractdoi: 10.1109/ICSENS.2016.7808810
  • 2017 • 164 Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: Impact of alloy formation on activity and stability
    Mutz, B. and Belimov, M. and Wang, W. and Sprenger, P. and Serrer, M.A. and Wang, D. and Pfeifer, P. and Kleist, W. and Grunwaldt, J.-D.
    ACS Catalysis 7 6802-6814 (2017)
    A promising bimetallic 17 wt % Ni3Fe catalyst supported on γ-Al2O3 was prepared via homogeneous deposition-precipitation for the application in the methanation of CO2 to gather more detailed insight into the structure and performance of the catalyst compared to state-of-the-art methanation systems. X-ray diffraction (XRD) analysis, detailed investigations using scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray spectroscopy analysis (EDX) of single particles as well as larger areas, high-resolution transmission electron microscopy (HRTEM) imaging, temperature-programmed reduction (H2-TPR), and in-depth interpretation of Raman bands led to the conclusion that a high fraction of the Ni and Fe formed the desired Ni3Fe alloy resulting in small and well-defined nanoparticles with 4 nm in size and a dispersion of 24%. For comparison, a monometallic catalyst with similar dispersion using the same preparation method and analysis was prepared. Using a fixed-bed reactor, the Ni3Fe catalyst showed better low-temperature performance compared to a monometallic Ni reference catalyst, especially at elevated pressures. Longterm experiments in a microchannel packed bed reactor under industrially relevant reaction conditions in competition with a commercial Ni-based methanation catalyst revealed an improved performance of the Ni3Fe system at 358°C and 6 bar involving enhanced conversion of CO2 to 71%, selectivity to CH4 > 98%, and most notably a high stability. Deactivation occurred only at lower temperatures, which was related to carbon deposition due to an increased CO production. Kinetic measurements were compared with literature models derived for Ni/Al2O3 catalysts, which fit well but underestimate the performance of the Ni3Fe system, emphasizing the synergetic effect of Ni and Fe. © 2017 American Chemical Society.
    view abstractdoi: 10.1021/acscatal.7b01896
  • 2017 • 163 Probing the electron density in HiPIMS plasmas by target inserts
    Hecimovic, A. and Held, J. and Schulz-Von Der Gathen, V. and Breilmann, W. and Maszl, C. and Von Keudell, A.
    Journal of Physics D: Applied Physics 50 (2017)
    High power impulse magnetron sputtering (HiPIMS) is a versatile technology to deposit thin films with superior properties. During HiPIMS, the power is applied in short pulses of the order of 100 μs at power densities of kW to a magnetron target creating a torus shaped dynamic high density plasma. This plasma torus is not homogeneous, but individual ionization zones become visible, which rotate along the torus with velocities of 10 km . Up to now, however, any direct measurement of the electron density inside these rotating ionization zones is missing. Here, we probe the electron density by measuring the target current locally by using small inserts embedded in an aluminium target facing the plasma torus. By applying simple sheath theory, a plasma density of the order of at the sheath edge can be inferred. The plasma density increases with increasing target current. In addition, the dynamics of the local target current variation is consistent with the dynamics of the traveling ionization zone causing a modulation of the local current density by 25%. © 2017 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6463/aa9914
  • 2017 • 162 Recent developments in plasma spray processes for applications in energy technology
    Mauer, G. and Jarligo, M.O. and Marcano, D. and Rezanka, S. and Zhou, D. and Vaßen, R.
    IOP Conference Series: Materials Science and Engineering 181 (2017)
    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates. © Published under licence by IOP Publishing Ltd.
    view abstractdoi: 10.1088/1757-899X/181/1/012001
  • 2017 • 161 Recommended reading list of early publications on atomic layer deposition-Outcome of the "Virtual Project on the History of ALD"
    Ahvenniemi, Esko and Akbashev, Andrew R. and Ali, Saima and Bechelany, Mikhael and Berdova, Maria and Boyadjiev, Stefan and Cameron, David C. and Chen, Rong and Chubarov, Mikhail and Cremers, Veronique and Devi, Anjana and Drozd, ...
    Journal of Vacuum Science & Technology A 35 010801 (2017)
    Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual project on the history of ALD (VPHA) is a volunteer-based effort with open participation, set up to make the early days of ALD more transparent. In VPHA, started in July 2013, the target is to list, read and comment on all early ALD academic and patent literature up to 1986. VPHA has resulted in two essays and several presentations at international conferences. This paper, based on a poster presentation at the 16th International Conference on Atomic Layer Deposition in Dublin, Ireland, 2016, presents a recommended reading list of early ALD publications, created collectively by the VPHA participants through voting. The list contains 22 publications from Finland, Japan, Soviet Union, United Kingdom, and United States. Up to now, a balanced overview regarding the early history of ALD has been missing; the current list is an attempt to remedy this deficiency. (C) 2016 Author(s).
    view abstractdoi: 10.1116/1.4971389
  • 2017 • 160 Relation between growth rate and structure of graphene grown in a 4″ showerhead chemical vapor deposition reactor
    Bekdüz, B. and Beckmann, Y. and Meier, J. and Rest, J. and Mertin, W. and Bacher, G.
    Nanotechnology 28 (2017)
    The chemical vapor deposition (CVD) growth of graphene on copper is controlled by a complex interplay of substrate preparation, substrate temperature, pressure and flow of reactive gases. A large variety of recipes have been suggested in literature, often quite specific to the reactor, which is being used. Here, we report on a relation between growth rate and quality of graphene grown in a scalable 4″ CVD reactor. The growth rate is varied by substrate pre-treatment, chamber pressure, and methane to hydrogen (CH4:H2) ratio, respectively. We found that at lower growth rates graphene grains become hexagonal rather than randomly shaped, which leads to a reduced defect density and a sheet resistance down to 268 Ω/sq. © 2017 IOP Publishing Ltd.
    view abstractdoi: 10.1088/1361-6528/aa68a8
  • 2017 • 159 Review Article: Recommended reading list of early publications on atomic layer deposition - Outcome of the "virtual Project on the History of ALD"
    Ahvenniemi, E. and Akbashev, A.R. and Ali, S. and Bechelany, M. and Berdova, M. and Boyadjiev, S. and Cameron, D.C. and Chen, R. and Chubarov, M. and Cremers, V. and Devi, A. and Drozd, V. and Elnikova, L. and Gottardi, G. and Gri...
    Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 35 (2017)
    Atomic layer deposition (ALD), a gas-phase thin film deposition technique based on repeated, self-terminating gas-solid reactions, has become the method of choice in semiconductor manufacturing and many other technological areas for depositing thin conformal inorganic material layers for various applications. ALD has been discovered and developed independently, at least twice, under different names: atomic layer epitaxy (ALE) and molecular layering. ALE, dating back to 1974 in Finland, has been commonly known as the origin of ALD, while work done since the 1960s in the Soviet Union under the name "molecular layering" (and sometimes other names) has remained much less known. The virtual project on the history of ALD (VPHA) is a volunteer-based effort with open participation, set up to make the early days of ALD more transparent. In VPHA, started in July 2013, the target is to list, read and comment on all early ALD academic and patent literature up to 1986. VPHA has resulted in two essays and several presentations at international conferences. This paper, based on a poster presentation at the 16th International Conference on Atomic Layer Deposition in Dublin, Ireland, 2016, presents a recommended reading list of early ALD publications, created collectively by the VPHA participants through voting. The list contains 22 publications from Finland, Japan, Soviet Union, United Kingdom, and United States. Up to now, a balanced overview regarding the early history of ALD has been missing; the current list is an attempt to remedy this deficiency. © 2016 Author(s).
    view abstractdoi: 10.1116/1.4971389
  • 2017 • 158 RF magnetron sputtering of a hydroxyapatite target: A comparison study on polytetrafluorethylene and titanium substrates
    Surmenev, R.A. and Surmeneva, M.A. and Grubova, I.Y. and Chernozem, R.V. and Krause, B. and Baumbach, T. and Loza, K. and Epple, M.
    Applied Surface Science 414 335-344 (2017)
    A pure hydroxyapatite (HA) target was used to prepare the biocompatible coating of HA on the surface of a polytetrafluorethylene (PTFE) substrate, which was placed on the same substrate holder with technically pure titanium (Ti) in the single deposition runs by radio-frequency (RF) magnetron sputtering. The XPS, XRD and FTIR analyses of the obtained surfaces showed that for all substrates, instead of the HA coating deposition, the coating of a mixture of calcium carbonate and calcium fluoride was grown. According to SEM investigations, the surface of PTFE was etched, and the surface topography of uncoated Ti was preserved after the depositions. The FTIR results reveal no phosphate bonds; only calcium tracks were observed in the EDX-spectra on the surface of the coated PTFE substrates. Phosphate oxide (V), which originated from the target, could be removed using a vacuum pump system, or no phosphate-containing bonds could be formed on the substrate surface because of the severe substrate bombardment process, which prevented the HA coating deposition. The observed results may be connected with the surface re-sputtering effect of the growing film by high-energy negatively charged ions (most probably oxygen or fluorine), which are accelerated in the cathode dark sheath. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2017.04.090
  • 2017 • 157 Rodlike Tetracene Derivatives
    Roth, M. and Ahles, M. and Gawrisch, C. and Schwalm, T. and Schmechel, R. and Melzer, C. and von Seggern, H. and Rehahn, M.
    Chemistry - A European Journal 23 13445-1345 (2017)
    Efficient and versatile synthetic access to rodlike tetracene derivatives was developed by means of Diels–Alder cycloaddition, halogenation, halogen–metal exchange, and transition metal mediated coupling reactions. Herein, the synthesis and structural, electrical, and charge-transport properties of three of the resulting materials, namely, 2-(tetracen-2-yl)tetracene, 1,4-bis(2-tetracenyl)benzene, and 2,5-bis(2-tetracenyl)thiophene, are presented. Good crystallization behavior on SiO2 substrates, narrowing of the bandgap by 0.2 eV, and a decrease of the ionization potential of more than 0.5 eV compared to tetracene were observed. Charge-carrier field-effect mobilities on the order of 10−1 cm2 V−1 s−1, on/off ratios of 105, and threshold voltages Vth<15 V were found in thin-film organic field-effect transistors prepared by standard high-vacuum deposition techniques. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/chem.201702382
  • 2017 • 156 Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation
    Liu, Y. and Plate, P. and Hinrichs, V. and Köhler, T. and Song, M. and Manley, P. and Schmid, M. and Bartsch, P. and Fiechter, S. and Lux-Steiner, M.C. and Fischer, C.-H.
    Journal of Nanoparticle Research 19 (2017)
    Ag nanoparticles have attracted interest for plasmonic absorption enhancement of solar cells. For this purpose, well-defined particle sizes and densities as well as very low deposition temperatures are required. Thus, we report here a new spray chemical vapour deposition method for producing Ag NP films with independent size and density control at substrate temperatures even below 100 °C, which is much lower than for many other techniques. This method can be used on different substrates to deposit Ag NP films. It is a reproducible, low-cost process which uses trimethylphosphine (hexafluoroacetylacetonato) silver as a precursor in alcoholic solution. By systematic variation of deposition parameters and classic experiments, mechanisms of particle growth and of deposition processes as well as the low decomposition temperature of the precursor could be explained. Using the 3D finite element method, absorption spectra of selected samples were simulated, which fitted well with the measured results. Hence, further applications of such Ag NP films for generating plasmonic near field can be predicted by the simulation. © 2017, Springer Science+Business Media Dordrecht.
    view abstractdoi: 10.1007/s11051-017-3834-6
  • 2017 • 155 Synthesis and evaluation of new copper ketoiminate precursors for a facile and additive-free solution-based approach to nanoscale copper oxide thin films
    Karle, Sarah and Rogalla, Detlef and Ludwig, Arne and Becker, Hans-Werner and Wieck, Andreas Dirk and Grafen, Markus and Ostendorf, Andreas and Devi, Anjana
    Dalton Transactions 46 2670--2679 (2017)
    Novel copper ketoiminate compounds were synthesized and for the first time applied for additive-free solution-based deposition of nanoscale copper oxide thin films. The two closely related compounds, namely the bis[4-(2-ethoxyethyl-imino)-3-pentanonato] copper, [Cu(EEKI)(2)], and bis[4-(3-methoxypropylimino)- 3-pentanonato] copper, [Cu(MPKI)(2)], were characterized by means of elemental and thermogravimetric analysis (TGA), as well as electron impact mass spectrometry (EI-MS). The advantages of these compounds are that they are liquid and possess excellent solubility in common organic solvents in addition to an optimum reactivity towards ambient moisture that enables a facile solution-based approach to nanoscale copper oxide thin films. Moreover, no additives or aging is needed to stabilize the solution processing of the copper oxide layers. [Cu(MPKI)(2)] was tested in detail for the deposition of copper oxide thin films by spin coating. Upon one-step annealing, high-quality, uniform, crystalline copper oxide thin films were deposited on Si, SiO2, as well as on quartz substrates. Structural, morphological and compositional characteristics of the copper oxide nanostructures were investigated in detail by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and a combined analysis using Rutherford backscattering spectroscopy (RBS) and nuclear reaction analysis (NRA). It was possible to control the copper oxide phases (CuO and Cu2O) by systematic tuning of the post-deposition annealing conditions. The functional properties in terms of optical band gap were investigated using UV/Vis spectroscopy, while the transport properties, such as resistivity, mobility and carrier concentration were analyzed employing Hall measurements, which confirmed the p-type conductivity of the copper oxide layers.
    view abstractdoi: 10.1039/c6dt04399b
  • 2017 • 154 TiC particle reinforced Ti-6Al-4V friction surfacing coatings
    Belei, C. and Fitseva, V. and dos Santos, J.F. and Alcântara, N.G. and Hanke, S.
    Surface and Coatings Technology 329 163-173 (2017)
    Friction surfacing is a thermo-mechanical process employed to deposit coatings in solid state resorting to friction between a rotating consumable rod and a substrate. The current work focuses on deposition of Ti-6Al-4V composite coatings reinforced with TiC particles on Ti-6Al-4V substrate. Particles were added using holes drilled into the rod tip. Different configurations of hole placements within the rod were correlated with process behavior, coating quality, deposition efficiency and particle distribution within the deposits. Configurations varied in number of holes and their distance to the rod's cross-sectional center. Holes placed near to the rod center increased axial forces during the plastification stage, whereas particles in holes far off the rod center were mainly expelled, not yielding as much effect on the process response. An increase in number of holes amplified the effects of the hole distance. The axial force during plastification stage affected both coating appearance and process efficiency. No full intermixing of coating material and particles during deposition occurred, thereby preventing a uniform distribution of particles throughout the coatings. Particles were mostly deposited along trails, which influenced the behavior of growing grains during recrystallization. © 2017 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2017.09.050
  • 2017 • 153 Transport mechanisms through PE-CVD coatings: Influence of temperature, coating properties and defects on permeation of water vapour
    Kirchheim, D. and Jaritz, M. and Mitschker, F. and Gebhard, M. and Brochhagen, M. and Hopmann, C. and Böke, M. and Devi, A. and Awakowicz, P. and Dahlmann, R.
    Journal of Physics D: Applied Physics 50 (2017)
    doi: 10.1088/1361-6463/aa511c
  • 2017 • 152 Unearthing [3-(Dimethylamino)propyl]aluminium(III) Complexes as Novel Atomic Layer Deposition (ALD) Precursors for Al2O3: Synthesis, Characterization and ALD Process Development
    Mai, L. and Gebhard, M. and de los Arcos, T. and Giner, I. and Mitschker, F. and Winter, M. and Parala, H. and Awakowicz, P. and Grundmeier, G. and Devi, A.
    Chemistry - A European Journal 23 10768-10772 (2017)
    Identification and synthesis of intramolecularly donor-stabilized aluminium(III) complexes, which contain a 3-(dimethylamino)propyl (DMP) ligand, as novel atomic layer deposition (ALD) precursors has enabled the development of new and promising ALD processes for Al2O3 thin films at low temperatures. Key for this promising outcome is the nature of the ligand combination that leads to heteroleptic Al complexes encompassing optimal volatility, thermal stability and reactivity. The first ever example of the application of this family of Al precursors for ALD is reported here. The process shows typical ALD like growth characteristics yielding homogeneous, smooth and high purity Al2O3 thin films that are comparable to Al2O3 layers grown by well-established, but highly pyrophoric, trimethylaluminium (TMA)-based ALD processes. This is a significant development based on the fact that these compounds are non-pyrophoric in nature and therefore should be considered as an alternative to the industrial TMA-based Al2O3 ALD process used in many technological fields of application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/chem.201702939
  • 2017 • 151 Unraveling compositional effects on the light-induced oxygen evolution in Bi(V-Mo-X)O4 material libraries
    Gutkowski, R. and Khare, C. and Conzuelo, F. and Kayran, Y.U. and Ludwig, Al. and Schuhmann, W.
    Energy and Environmental Science 10 1213-1221 (2017)
    The influence of co-deposited transition metals X (X = Ta, W, Nb) with various relative concentrations on the photoelectrochemical performance of BiVO4 is investigated. Thin film material libraries with well-defined composition gradients of Bi, V and two transition metals are fabricated by combinatorial sputter co-deposition. Materials with the highest photoelectrochemical performance are identified by high-throughput characterization of the Bi(V-Mo-X)O4 material libraries using an optical scanning droplet cell. Bi(V-Mo-W)O4 and Bi(V-Mo-Nb)O4 material libraries show the highest improvement in the photocurrent, with ten times higher photocurrents of up to 1 mA cm-2 compared to a BiVO4 reference material library. Deviations from the V:Bi equiatomic ratio lead to a decrease in the photocurrent for pristine monoclinic BiVO4. By the addition of transition metals this effect is minimized and no significant decrease in the photocurrent occurs up to 10 at% variation from the equiatomic V:Bi ratio. Excellent photoelectrochemical performance is reached under these conditions in regions with a V:Bi atomic ratio of 70:30 and co-deposited Nb concentrations of >10 at%. Scanning photoelectrochemical microscopy allows the evaluation of the correlation between the generated oxygen at a photoanode and the measured photocurrent. © 2017 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c7ee00287d
  • 2017 • 150 Unusual application of aluminium-doped ZnO thin film developed by metalorganic chemical vapour deposition for surface temperature sensor
    Nebatti, A. and Pflitsch, C. and Atakan, B.
    Thin Solid Films 636 532-536 (2017)
    A relatively new promising method for surface temperature measurement is the use of thermographic phosphors. For this purpose, the temperature-dependent photoluminescence (PL) properties of aluminium-doped ZnO thin films were studied. The films have been successfully deposited on substrate of Si(100)-orientation by metalorganic chemical vapour deposition (MOCVD) method. For the use of the films as temperature sensors, the Photoluminescence (PL) properties are most important. Consequently, the emission peaks are observed in the undoped and Al-doped films deposited at 550 °C and annealed at 900 °C for 2 h after ultraviolet laser excitation (355 nm). The results show that with increasing temperature the PL intensity is quenched for the Al-doped ZnO film (n(Al)/n(Zn) = 0.051). As a result, the area under the spectrum changes significantly with temperature, making it useful for temperature evaluation. Al-doped ZnO films can be used as temperature sensors within the range of room temperature to 300 °C. Beyond this range the spectrum is no longer sensitive to temperature change.
    view abstractdoi: 10.1016/j.tsf.2017.07.002
  • 2017 • 149 Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study
    Bakan, E. and Marcano, D. and Zhou, D. and Sohn, Y.J. and Mauer, G. and Vaßen, R.
    Journal of Thermal Spray Technology 26 1011-1024 (2017)
    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber. © 2017, ASM International.
    view abstractdoi: 10.1007/s11666-017-0574-1
  • 2016 • 148 3-Dimensional microstructural characterization of CdTe absorber layers from CdTe/CdS thin film solar cells
    Stechmann, G. and Zaefferer, S. and Konijnenberg, P. and Raabe, D. and Gretener, C. and Kranz, L. and Perrenoud, J. and Buecheler, S. and Tiwari, A.N.
    Solar Energy Materials and Solar Cells 151 66-80 (2016)
    The present work reports on a study on the microstructure and its evolution during processing of CdTe absorber layers from CdTe/CdS thin film solar cells grown by low-temperature processes in substrate configuration. Investigations were performed at different stages of the cell manufacturing, from deposition to the final functional solar cell, with the aim to understand the microstructure formation of the photoactive layer. To this end 3-dimensional microstructure characterization was performed using focused ion beam/electron backscatter diffraction tomography ("3D-EBSD") together with conventional 2D-EBSD. The analyses revealed strong microstructural and textural changes developing across the thickness of the absorber material, between the back contact and the p-n junction interfaces. Based on the 3-dimensional reconstruction of the CdTe thin film, a coherent growth model was proposed, emphasizing the microstructural continuity before and after a typical CdCl2-annealing activation treatment. One of the principal results is that the absorber layer is created by two concomitant processes, deposition and recrystallization, which led to different textures and microstructures. Further changes are the result of subsequent annealing treatments, favoring twinning and promoting well-defined texture components. The results open the possibility for a grain boundary engineering approach applied to the design of such cells. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.solmat.2016.02.023
  • 2016 • 147 A combined STM and SPA-LEED study of the "explosive" nucleation and collective diffusion in Pb/Si(111)
    Hattab, H. and Hupalo, M. and Hershberger, M.T. and Horn-von Hoegen, M. and Tringides, M.C.
    Surface Science 646 50-55 (2016)
    A novel type of very fast nucleation was recently found in Pb/Si(111) with 4- to 7-layer high islands becoming crystalline in an "explosive" way, when the Pb deposited amount in the wetting layer is compressed to θc ~ 1.22 ML, well above the metallic Pb(111) density. This "explosive" nucleation is very different from classical nucleation when island growth is more gradual and islands grow in size by single adatom aggregation [8]. In order to identify the key parameters that control the nucleation we used scanning tunneling microscopy (STM) and spot profile analysis low energy electron diffraction (SPA-LEED). It was found that the number and duration of steps in iterative deposition used to approach θc and the flux rate have dramatic effects on the crystallization process. Larger depositions over shorter times induce greater spatial coverage fluctuations, so local areas can reach the critical coverage θc easier. This can trigger the collective motion of the wetting layer from far away to build the Pb islands "explosively". The SPA-LEED experiments show that even low flux experiments in iterative deposition experiments can trigger transfer of material to the superstable 7-layer islands, as seen from the stronger satellite rings close to the (00) spot. © 2015 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.susc.2015.08.017
  • 2016 • 146 An efficient PE-ALD process for TiO2 thin films employing a new Ti-precursor
    Gebhard, M. and Mitschker, F. and Wiesing, M. and Giner, I. and Torun, B. and De Los Arcos, T. and Awakowicz, P. and Grundmeier, G. and Devi, A.
    Journal of Materials Chemistry C 4 1057-1065 (2016)
    An efficient plasma-enhanced atomic layer deposition (PE-ALD) process was developed for TiO2 thin films of high quality, using a new Ti-precursor, namely tris(dimethylamido)-(dimethylamino-2-propanolato)titanium(iv) (TDMADT). The five-coordinated titanium complex is volatile, thermally stable and reactive, making it a potential precursor for ALD and PE-ALD processes. Process optimization was performed with respect to plasma pulse length and reactive gas flow rate. Besides an ALD window, the application of the new compound was investigated using in situ quartz-crystal microbalance (QCM) to monitor surface saturation and growth per cycle (GPC). The new PE-ALD process is demonstrated to be an efficient procedure to deposit stoichiometric titanium dioxide thin films under optimized process conditions with deposition temperatures as low as 60°C. Thin films deposited on Si(100) and polyethylene-terephthalate (PET) exhibit a low RMS roughness of about 0.22 nm. In addition, proof-of-principle studies on TiO2 thin films deposited on PET show promising results in terms of barrier performance with oxygen transmission rates (OTR) found to be as low as 0.12 cm3 x cm-2 x day-1 for 14 nm thin films. © The Royal Society of Chemistry 2016.
    view abstractdoi: 10.1039/c5tc03385c
  • 2016 • 145 An experimental study of ultrafiltration for sub-10nm quantum dots and sub-150 nm nanoparticles through PTFE membrane and Nuclepore filters
    Chen, S.-C. and Segets, D. and Ling, T.-Y. and Peukert, W. and Pui, D.Y.H.
    Journal of Membrane Science 497 153-161 (2016)
    Ultrafiltration techniques (pore size of membrane below 100nm) are widely used in chemical engineering, semiconductor, pharmaceutical, food and beverage industries. However, for small particles, which are more and more attracting interests, the pore size often does not correlate well with sieving characteristics of the ultra-membranes. This may cause serious issues during modeling and prediction of retention efficiencies. Herein, a series of liquid filtration experiments with unfavorable conditions were performed. PTFE membranes (50, 100nm) and Nuclepore filters (50, 400nm) were challenged with 1.7nm manganese doped ZnS and 6.6 nm ZnO quantum dots (QDs), 12.4, 34.4 and 50 nm Au and 150 nm SiO2 nanoparticles. For larger and medium sized particles, sieving and eventually pore blockage phenomena were observed. In comparison, for small QDs, a high initial retention efficiency (>0.4) in both filters was monitored, followed by a reduced efficiency with ongoing particle loading. This high initial retention of small nanoparticles was attributed to diffusion deposition rather than to sieving since the ratio of pore size to particle size was significantly high (up to 58). Our experimental results allow a basic understanding of the deposition mechanism of small nanoparticles (diffusion vs. sieving) in different filter structures. © 2015 Elsevier B.V.
    view abstractdoi: 10.1016/j.memsci.2015.09.022
  • 2016 • 144 Atomic layer deposition and high-resolution electron microscopy characterization of nickel nanoparticles for catalyst applications
    Dashjav, E. and Lipińska-Chwałek, M. and Grüner, D. and Mauer, G. and Luysberg, M. and Tietz, F.
    Surface and Coatings Technology 307 428-435 (2016)
    Ni nanoparticles (diameter <  10 nm) are deposited on Si and ceramic substrates of porous lanthanum-substituted strontium titanate/yttrium-stabilized zirconia (LST/YSZ) composites by a two-step process. First, NiO films are produced by atomic layer deposition at 200 °C using bis(methylcyclopentadienyl)nickel(II) (Ni(MeCp)2) and H2O as precursors. In the second step, the NiO films are reduced in H2 atmosphere at 400–800 °C. The size of the resulting Ni nanoparticles is controlled by the temperature. The largest particles with a diameter of about 7 nm are obtained at 800 °C. NiO film and Ni nanoparticles deposited on Si substrates are characterized by high-resolution electron microscopy. It was found that the Ni(MeCp)2 precursor reacts with the substrate, leading to the formation of NiSi2 precipitates beneath the surface of the Si wafer and amorphization of the surrounding area, resulting in a 10 nm thick top layer of the Si wafer. After reductive annealing, NiSi2 precipitates are preserved but Si recrystallizes and the amorphous NiO film transforms into crystalline Ni nanoparticles well distributed on the wafer surface. Process parameters were optimized for Si substrates and transfer of the process to ceramic LST/YSZ substrates is possible in principle. However, a much higher number of ALD cycles (1200 compared to 100 for Si) are necessary to obtain Ni nanoparticles of similar size and the number density of particles is lower than observed for Si substrates. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2016.08.074
  • 2016 • 143 Atomic-layer-controlled deposition of TEMAZ/O2-ZrO2 oxidation resistance inner surface coatings for solid oxide fuel cells
    Keuter, T. and Mauer, G. and Vondahlen, F. and Iskandar, R. and Menzler, N.H. and Vaßen, R.
    Surface and Coatings Technology 288 211-220 (2016)
    Solid oxide fuel cells (SOFCs) directly convert the chemical energy of fuels into electrical energy with high efficiency. Under certain conditions oxygen can diffuse to the Ni/8 mol% Y2O3-doped ZrO2 substrate of anode-supported SOFCs, then the nickel re-oxidizes, leading to cracks in the electrolyte and cell failure thus limiting the durability of SOFCs. In order to improve the stability of SOFCs with respect to oxidation, the inner surface of the porous substrate is coated with a ZrO2 oxidation resistance layer using atomic layer deposition (ALD) with the precursors tetrakis(ethylmethylamino)zirconium (TEMAZ) and molecular oxygen. This TEMAZ/O2-ZrO2 ALD process has not yet been reported in the literature and hence, the development of the process is described in this paper. The inner surface of the porous substrate is coated with ZrO2 and the film thickness is compared with theoretical predictions, verifying the ALD model. Furthermore, the coating depth can be estimated using a simple analytical equation. The ALD ZrO2 film protects the nickel in the substrate against oxidation for at least 17 re-oxidation/re-reduction cycles. The ZrO2 inner surface coating is a highly promising candidate for enhancing the resistance of SOFCs to re-oxidation because of the excellent oxidation resistance and good cycling stability of the film. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2016.01.026
  • 2016 • 142 Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application
    Khalili, V. and Khalil-Allafi, J. and Sengstock, C. and Motemani, Y. and Paulsen, A. and Frenzel, J. and Eggeler, G. and Köller, M.
    Journal of the Mechanical Behavior of Biomedical Materials 59 337-352 (2016)
    Release of Ni1+ ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20 wt% Silicon and 1 wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8 GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5 GPa) and bone tissue (≈30 GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5 mm) and normal load before failure (837 mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. © 2016 Elsevier Ltd.
    view abstractdoi: 10.1016/j.jmbbm.2016.02.007
  • 2016 • 141 Controlling the stress state of La1-xSrxCoyFe1-yO3-δ oxygen transport membranes on porous metallic supports deposited by plasma spray-physical vapor process
    Marcano, D. and Mauer, G. and Sohn, Y.J. and Vaßen, R. and Garcia-Fayos, J. and Serra, J.M.
    Journal of Membrane Science 503 1-7 (2016)
    La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF), deposited on a metallic porous support by plasma spray-physical vapor deposition (PS-PVD) is a promising candidate for oxygen-permeation membranes. However, after O2 permeation tests, membranes show vertical cracks leading to leakage during the tests. In the present work, one important feature leading to crack formation was identified. More specifically; membrane residual stress changes during thermal loading were found to be related to a phase transformation in the support. In order to improve the performance of the membranes, the metallic support was optimized by applying an appropriate heat treatment. The observed oxygen fluxes during permeation tests had infinite selectivity and were amongst the highest fluxes ever measured for LSCF membranes in the thickness range of 30μm, supported by LSCF porous substrates. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.memsci.2015.12.029
  • 2016 • 140 Direct metal deposition of refractory high entropy alloy MoNbTaW
    Dobbelstein, H. and Thiele, M. and Gurevich, E.L. and George, E.P. and Ostendorf, A.
    Physics Procedia 83 624-633 (2016)
    Alloying of refractory high entropy alloys (HEAs) such as MoNbTaW is usually done by vacuum arc melting (VAM) or powder metallurgy (PM) due to the high melting points of the elements. Machining to produce the final shape of parts is often needed after the PM process. Casting processes, which are often used for aerospace components (turbine blades, vanes), are not possible. Direct metal deposition (DMD) is an additive manufacturing technique used for the refurbishment of superalloy components, but generating these components from the bottom up is also of current research interest. MoNbTaW possesses high yield strength at high temperatures and could be an alternative to state-of-the-art materials. In this study, DMD of an equimolar mixture of elemental powders was performed with a pulsed Nd:YAG laser. Single wall structures were built, deposition strategies developed and the microstructure of MoNbTaW was analyzed by back scattered electrons (BSE) and energy dispersive X-ray (EDX) spectroscopy in a scanning electron microscope. DMD enables the generation of composition gradients by using dynamic powder mixing instead of pre-alloyed powders. However, the simultaneous handling of several elemental or pre-alloyed powders brings new challenges to the deposition process. The influence of thermal properties, melting point and vapor pressure on the deposition process and chemical composition will be discussed. © 2016 The Authors.
    view abstractdoi: 10.1016/j.phpro.2016.08.065
  • 2016 • 139 Effect of pH on the spontaneous synthesis of palladium nanoparticles on reduced graphene oxide
    Zhang, X. and Ooki, W. and Kosaka, Y.R. and Okonogi, A. and Marzun, G. and Wagener, P. and Barcikowski, S. and Kondo, T. and Nakamura, J.
    Applied Surface Science 389 911-915 (2016)
    Palladium (Pd) nanoparticles were spontaneously deposited on reduced graphene oxide (rGO) without any external reducing agents. The prepared Pd/rGO composites were then characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Spontaneous deposition occurred because of a redox reaction between the Pd precursor and rGO, which involved reduction of bivalent Pd to metallic Pd0 and oxidation of the sp2 carbon of rGO to oxygen-containing functional groups. The amount of Pd deposited on rGO varied with pH, and this was attributed to electrostatic interactions between the Pd precursor and rGO based on the results of zeta potential measurements. The importance of the redox reaction in the spontaneous deposition was demonstrated in the experiment with Zn, Ni, Cu, Ag, Pt, Pd, and Au. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2016.08.014
  • 2016 • 138 Efficient additive manufacturing production of oxide- and nitride-dispersion-strengthened materials through atmospheric reactions in liquid metal deposition
    Springer, H. and Baron, C. and Szczepaniak, A. and Jägle, E.A. and Wilms, M.B. and Weisheit, A. and Raabe, D.
    Materials and Design 111 60-69 (2016)
    Despite being extremely attractive compounds for strengthening, oxides and nitride particles have found only limited use in metallic materials design, as obtaining appropriate size and dispersion up to now necessitates production by time- and cost-intensive powder metallurgy processes. Here we present an alternative production method, based on the oxide and nitride formation during liquid-metal-deposition procedures in oxygen and/or nitrogen containing atmospheres. Rapid solidification of the small liquid zone suppresses floatation and agglomeration of particles, while subsequent thermo-mechanical treatments densify the material and aids particle dispersion. The in-situ particle formation coupled to the high deposition rates ensures a drastically shortened production chain. The feasibility of the method is exemplarily demonstrated on austenitic stainless steel and commercially available deposition techniques as used in additive manufacturing, performed without shielding gas but instead at air. Even without substantial optimisation of processes and material, &gt; 2 vol.% of hard and stable Cr2N particles with sizes down to 80 nm could be evenly dispersed, resulting in pronounced strengthening at both room temperature and 700 °C without significant loss in ductility. Future possibilities for creating novel generations of cost effective and lean high strength materials, especially for high temperature applications, are outlined and discussed. © 2016 Elsevier Ltd
    view abstractdoi: 10.1016/j.matdes.2016.08.084
  • 2016 • 137 Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis
    Angelov, S.D. and Koenen, S. and Jakobi, J. and Heissler, H.E. and Alam, M. and Schwabe, K. and Barcikowski, S. and Krauss, J.K.
    Journal of Nanobiotechnology 14 (2016)
    Background: Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Results: Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with particles <10 nm, which also showed the most stable impedance dynamics during stimulation for 3 weeks and the lowest total power of local field potential during neuronal activity recording. Histological analysis revealed that NP-coating did not affect glial reactions or neural cell-count. Conclusions: Coating with NP <10 nm may improve electrode's impedance stability without affecting biocompatibility. Increased impedance after NP-coating may improve neural recording due to better signal-to-noise ratio. © 2016 Angelov et al.
    view abstractdoi: 10.1186/s12951-015-0154-9
  • 2016 • 136 Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films
    Ivanova, A.A. and Surmeneva, M.A. and Tyurin, A.I. and Pirozhkova, T.S. and Shuvarin, I.A. and Prymak, O. and Epple, M. and Chaikina, M.V. and Surmenev, R.A.
    Applied Surface Science 360 929-935 (2016)
    As a measure of the prevention of implant associated infections, a number of strategies have been recently applied. Silver-containing materials possessing antibacterial activity as expected might have wide applications in orthopedics and dentistry. The present work focuses on the physico-chemical characterization of silver-containing hydroxyapatite (Ag-HA) coating obtained by radio frequency (RF) magnetron sputtering. Mechanochemically synthesized Ag-HA powder (Ca10-xAgx(PO4)6(OH)2-x, x = 1.5) was used as a precursor for sputtering target preparation. Morphology, composition, crystallinity, physico-mechanical features (Young's modulus and nanohardness) of the deposited Ag-HA coatings were investigated. The sputtering of the nanostructured multicomponent target at the applied process conditions allowed to deposit crystalline Ag-HA coating which was confirmed by XRD and FTIR data. The SEM results revealed the formation of the coating with the grain morphology and columnar cross-section structure. The EDX analysis confirmed that Ag-HA coating contained Ca, P, O and Ag with the Ca/P ratio of 1.6 ± 0.1. The evolution of the mechanical properties allowed to conclude that addition of silver to HA film caused increase of the coating nanohardness and elastic modulus compared with those of pure HA thin films deposited under the same deposition conditions. © 2015 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.apsusc.2015.11.087
  • 2016 • 135 Finite element simulation of coating-induced heat transfer: application to thermal spraying processes
    Berthelsen, R. and Tomath, D. and Denzer, R. and Menzel, A.
    Meccanica 51 291-307 (2016)
    Thermal spraying is a widely applied coating technique. The optimisation of the thermal spraying process with respect to temperature or temperature induced residual stress states requires a numerical framework for the simulation of the coating itself as well as of the quenching procedure after the application of additional material. This work presents a finite element framework for the simulation of mass deposition due to coating by means of thermal spraying combined with the simulation of nonlinear heat transfer of a rigid heat conductor. The approach of handling the dynamic problem size is highlighted with focus on the thermodynamical consistency of the derived model. With the framework implemented, numerical examples are employed and material parameters are fitted to experimental data of steel as well as of tungsten-carbide–cobalt-coating. © 2015, Springer Science+Business Media Dordrecht.
    view abstractdoi: 10.1007/s11012-015-0236-7
  • 2016 • 134 High-temperature stability and interfacial reactions of Ti and TiN thin films on Al2O3 and ZrO2
    Brust, S. and Röttger, A. and Theisen, W.
    Surface and Coatings Technology 307 47-55 (2016)
    Metallic thin films are used in many applications to modify ceramic surfaces. However, during subsequent processing, chemical interactions may change the properties of the coating. In addition, differences in thermal expansion can lead to delamination of the coating. In this study, titanium and titanium nitride thin films were deposited via physical and chemical vapor deposition (PVD and CVD, respectively) on alumina- and yttria-stabilised zirconia substrates, before being heat-treated at 1200 °C or 1500 °C in static argon atmosphere and analysed via SEM, EDS and XRD to investigate the effect of temperature on the thin films. It was shown that the chemical interactions between TiN and both Al2O3 and ZrO2 are weak. However, partial delamination of the TiN coating on alumina was observed after both annealing temperatures. The TiN coating on zirconia remained adherent. In contrast, the Ti coatings underwent a transformation to cubic TiO on both oxide substrates. This was due to partial reduction of the ZrO2 to ZrO2 − x and dissolution of the Al2O3, which leads to a Ti3Al0.9O1.1 interlayer. The TiO coating which formed remained adherent on the alumina at both annealing temperatures, but delaminated from the ZrO2 substrate after annealing at 1500 °C. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2016.08.060
  • 2016 • 133 Investigations on the Initial Stress Evolution During Atmospheric Plasma Spraying of YSZ by In Situ Curvature Measurement
    Mutter, M. and Mauer, G. and Mücke, R. and Vaßen, R. and Back, H.C. and Gibmeier, J.
    Journal of Thermal Spray Technology 25 672-683 (2016)
    The residual stresses within plasma-sprayed coatings are an important factor that can influence the lifetime as well as the performance in operation. The investigation of stresses evolving during deposition and post-deposition cooling for atmospheric plasma spraying of yttria-stabilized zirconia coatings using in situ measurement of the samples curvature is a powerful tool for identifying the factors that contribute to stress generation. Under various spray conditions, the first deposition pass leads to a significantly larger increase in samples curvature than the subsequent passes. It is shown in this work that the amount of curvature change at the onset of spraying is significantly influenced by the spray conditions, as well as by the substrate material. More information on the origin of this steep curvature increase at the onset of spraying was obtained by single splat experiments, which yielded information on the splat bonding behavior under various conditions. A comparison of the compressive yield strength for different substrate materials indicated the influence of substrate residual stress relaxation. Residual stress measurements using the incremental hole-drilling method and x-ray diffraction confirmed that the coating deposition affects the substrate residual stress level. The yield strength data were combined with the substrate near-surface temperature during deposition, obtained by finite element simulations, and with the measured residual stress-profile. This revealed that residual stress relaxation is the key factor for the initial curvature increase. © 2016, ASM International.
    view abstractdoi: 10.1007/s11666-016-0398-4
  • 2016 • 132 Large-area MoS2 deposition via MOVPE
    Marx, M. and Nordmann, S. and Knoch, J. and Franzen, C. and Stampfer, C. and Andrzejewski, D. and Kümmell, T. and Bacher, G. and Heuken, M. and Kalisch, H. and Vescan, A.
    Journal of Crystal Growth 464 100-104 (2016)
    The direct deposition of the 2D transition metal dichalcogenide MoS2 via metal-organic vapour phase epitaxy (MOVPE) is investigated. Growth is performed in a commercial AIXTRON horizontal hot-wall reactor. Molybdenum hexacarbonyl (MCO) and Di-tert-butyl sulfide (DTBS) are used as metal-organic precursors for molybdenum and sulfur, respectively. The successful deposition of MoS2 is demonstrated via Raman spectroscopy on various substrates such as sapphire and Si as well as AlN and GaN templates. The influence of growth time on the evolution of layer morphology is investigated. Variation of carrier gas reveals that a pure nitrogen growth atmosphere and a growth temperature of 750C improve layer quality. Additionally, a post-deposition annealing process of the grown samples is examined. It is shown that annealing in a pure nitrogen atmosphere at temperatures between 650C and 750C strongly increases the Raman intensities. © 2016 Elsevier B.V.
    view abstractdoi: 10.1016/j.jcrysgro.2016.11.020
  • 2016 • 131 Nanostructured Ti-Ta thin films synthesized by combinatorial glancing angle sputter deposition
    Motemani, Y. and Khare, C. and Savan, A. and Hans, M. and Paulsen, A. and Frenzel, J. and Somsen, C. and Mücklich, F. and Eggeler, G. and Ludwig, Al.
    Nanotechnology 27 (2016)
    Ti-Ta alloys are attractive materials for applications in actuators as well as biomedical implants. When fabricated as thin films, these alloys can potentially be employed as microactuators, components for micro-implantable devices and coatings on surgical implants. In this study, Ti100-xTa x (x = 21, 30) nanocolumnar thin films are fabricated by glancing angle deposition (GLAD) at room temperature using Ti73Ta27 and Ta sputter targets. Crystal structure, morphology and microstructure of the nanostructured thin films are systematically investigated by XRD, SEM and TEM, respectively. Nanocolumns of ∼150-160 nm in width are oriented perpendicular to the substrate for both Ti79Ta21 and Ti70Ta30 compositions. The disordered α″ martensite phase with orthorhombic structure is formed in room temperature as-deposited thin films. The columns are found to be elongated small single crystals which are aligned perpendicular to the and planes of α″ martensite, indicating that the films' growth orientation is mainly dominated by these crystallographic planes. Laser pre-patterned substrates are utilized to obtain periodic nanocolumnar arrays. The differences in seed pattern, and inter-seed distances lead to growth of multi-level porous nanostructures. Using a unique sputter deposition geometry consisting of Ti73Ta27 and Ta sputter sources, a nanocolumnar Ti-Ta materials library was fabricated on a static substrate by a co-deposition process (combinatorial-GLAD approach). In this library, a composition spread developed between Ti72.8Ta27.2 and Ti64.4Ta35.6, as confirmed by high-throughput EDX analysis. The morphology over the materials library varies from well-isolated nanocolumns to fan-like nanocolumnar structures. The influence of two sputter sources is investigated by studying the resulting column angle on the materials library. The presented nanostructuring methods including the use of the GLAD technique along with pre-patterning and a combinatorial materials library fabrication strategy offer a promising technological approach for investigating Ti-Ta thin films for a range of applications. The proposed approaches can be similarly implemented for other materials systems which can benefit from the formation of a nanocolumnar morphology. © 2016 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0957-4484/27/49/495604
  • 2016 • 130 Nitrogen-Doped Hollow Amorphous Carbon Spheres@Graphitic Shells Derived from Pitch: New Structure Leads to Robust Lithium Storage
    Ma, Q. and Wang, L. and Xia, W. and Jia, D. and Zhao, Z.
    Chemistry - A European Journal 22 2339-2344 (2016)
    Nitrogen-doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen-containing groups on NHCS, and the resulting NHCS-O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium-ion batteries. The NHCS-O electrode maintained a reversible specific capacity of 616 mAh g-1 after 250 cycles at a current rate of 500 mA g-1, which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS-O electrode exhibited a reversible capacity of 503 mAh g-1 at a high current density of 1.5 A g-1. The superior electrochemical performance of NHCS-O can be attributed to the hybrid structure, high N and O contents, and rich surface defects. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/chem.201503462
  • 2016 • 129 Palladium Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as a Release-and-Catch Catalytic System in Aerobic Liquid-Phase Ethanol Oxidation
    Dong, W. and Chen, P. and Xia, W. and Weide, P. and Ruland, H. and Kostka, A. and Köhler, K. and Muhler, M.
    ChemCatChem 8 1269-1273 (2016)
    Pd nanoparticles supported on carbon nanotubes were applied in the selective oxidation of ethanol in the liquid phase. The characterization of the surface and bulk properties combined with the catalytic tests indicated the dissolution and redeposition of Pd under the reaction conditions. A dynamic interplay within the Pd life cycle was identified to be responsible for the overall reactivity. Nitrogen-doped carbon nanotubes were found to act as an excellent support for the Pd catalyst system by efficiently stabilizing and recapturing the Pd species, which resulted in high activity and selectivity to acetic acid. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/cctc.201501379
  • 2016 • 128 Plasmonic Au/TiO2 nanostructures for glycerol oxidation
    Dodekatos, G. and Tüysüz, H.
    Catalysis Science and Technology 6 7307-7315 (2016)
    Au nanoparticles supported on P25 TiO2 (Au/TiO2) were prepared by a facile deposition-precipitation method with urea and investigated for surface plasmon-assisted glycerol oxidation under base-free conditions. Au/TiO2 samples were characterized in detail by X-ray diffraction, UV-vis spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The adopted synthetic methodology permits deposition of Au nanoparticles with similar mean particle sizes up to 12.5 wt% loading that allows for the evaluation of the influence of the Au amount (without changing the particle size) on its photocatalytic performance for glycerol oxidation. The reaction conditions were optimized by carrying out a systematic study with different Au loadings on TiO2, reaction times, temperatures, catalyst amounts, O2 pressures and Au particle sizes for photocatalytic reactions as well as traditional heterogeneous catalysis. It has been shown that visible light irradiation during the reaction has a beneficial effect on the conversion of glycerol where the best catalytic results were observed for 7.5 wt% Au loading with an average particle size of around 3 nm. The main product observed, with selectivities up to 63%, was high-value dihydroxyacetone that has important industrial applications, particularly in the cosmetic industry. © 2016 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c6cy01192f
  • 2016 • 127 Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing
    Jägle, E.A. and Sheng, Z. and Wu, L. and Lu, L. and Risse, J. and Weisheit, A. and Raabe, D.
    JOM 68 943-949 (2016)
    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis. © 2016, The Author(s).
    view abstractdoi: 10.1007/s11837-015-1764-2
  • 2016 • 126 Preformed 2 nm Ag Clusters Deposited into Ionic Liquids: Stabilization by Cation-Cluster Interaction
    Engemann, D.C. and Roese, S. and Hövel, H.
    Journal of Physical Chemistry C 120 6239-6245 (2016)
    Recently, the formation of nanoparticles by sputter deposition of metal atoms onto the surface of room-temperature ionic liquids (RTIL) was reported; however, the growth and stabilization mechanism within the ionic liquid are still in discussion. Here, we present another approach by depositing Ag clusters with a diameter of 2 nm preformed in a supersonic nozzle expansion into an ionic liquid. Thus, the properties and size distribution of the clusters are well-known before deposition. The mixture of the clusters with the ionic liquid is investigated in situ and ex situ with UV/vis measurements and X-ray absorption near-edge structure (XANES) spectroscopy at the Ag L2 edge. The plasmon resonances of the Ag clusters show that up to 10 μg/mL, the clusters stay separated in the RTIL and suggest an interaction process between the cations in the liquid and the surfaces of the clusters, which is confirmed by a shift of the absorption edge in the XANES measurements. For higher cluster concentration and on a longer time scale, the stabilization ability of ionic liquids can be investigated. © 2016 American Chemical Society.
    view abstractdoi: 10.1021/acs.jpcc.5b12120
  • 2016 • 125 Preparation of pulsed DC magnetron deposited Fe-doped SnO2 coatings
    Kormunda, M. and Fischer, D. and Hertwig, A. and Beck, U. and Sebik, M. and Esser, N.
    Physica Status Solidi (A) Applications and Materials Science 213 2303-2309 (2016)
    Iron-doped SnO2 coatings were deposited in a 50 kHz DC-pulsed magnetron sputtering discharge. The pulses had a duration of 4 μs in selected gas mixtures from pure argon up to 60% of oxygen at a constant total pressure of 0.2 Pa. A single target of SnO2 with Fe inset was used. The mass spectrometry study detected the gas-related ions Ar+, O2 + and O+, where the last one becomes the dominant positive ion at higher oxygen contents. Atomic oxygen ions had a higher energy as it resulted from the collision-caused dissociation on the target surface. The tin-related species were detected as Sn+ and SnO+. SnO2 + species were not detected. The deposition rate decreased by using gas mixtures with oxygen as well as the corresponding amount of Sn-related species in the plasma. The increase of oxygen also increased significantly the sheet resistance of the films. The XPS study showed that the iron concentration decreased by using additional oxygen. But the O/Sn ratio in the coatings was constant, contrary to the increased FeO/Fe ratio in the films. An additional analysis of the coatings by spectroscopic ellipsometry has shown a dependence of the polarizability and the permittivity on the amount of oxygen used during the deposition. In contrast, the study has found no such dependence for the absorption of the layers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/pssa.201532882
  • 2016 • 124 Preparing hydroxyapatite-silicon composite suspensions with homogeneous distribution of multi-walled carbon nano-tubes for electrophoretic coating of NiTi bone implant and their effect on the surface morphology
    Khalili, V. and Khalil-Allafi, J. and Xia, W. and Parsa, A.B. and Frenzel, J. and Somsen, C. and Eggeler, G.
    Applied Surface Science 366 158-165 (2016)
    Preparing a stable suspension is a main step towards the electrophoretically depositing of homogeneous and dense composite coatings on NiTi for its biomedical application. In the present study, different composite suspensions of hydroxyapatite, silicon and multi-walled carbon nano-tubes were prepared using n-butanol and triethanolamine as media and dispersing agent, respectively. Multi-walled carbon nanotubes were first functionalized in the nitric acid vapor for 15 h at 175 °C, and then mixed into suspensions. Thermal desorption spectroscopy profiles indicate the formation of functional groups on multi-walled carbon nano-tubes. An excellent suspension stability can be achieved for different amounts of triethanolamine. The amount of triethanolamine can be increased by adding a second component to a stable hydroxyapatite suspension due to an electrostatic interaction between components in suspension. The stability of composite suspension is less than that of the hydroxyapatite suspension, due to density differences, which under the gravitational force promote the demixing. The scanning electron microscopy images of the coatings surface show that more dense coatings are developed on NiTi substrate using electrophoretic deposition and sintering at 850 °C in the simultaneous presence of silicon and multi-walled carbon nanotubes in the hydroxyapatite coatings. The atomic force microscopy results of the coatings surface represent that composite coatings of hydroxyapatite-20 wt.% silicon and hydroxyapatite-20 wt.% silicon-1 wt.% multi-walled carbon nano-tubes with low zeta potential have rougher surfaces. © 2016 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.apsusc.2016.01.053
  • 2016 • 123 Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction
    Xie, K. and Xia, W. and Masa, J. and Yang, F. and Weide, P. and Schuhmann, W. and Muhler, M.
    Journal of Energy Chemistry 25 282-288 (2016)
    RuO2 nanoparticles supported on multi-walled carbon nanotubes (CNTs) functionalized with oxygen (OCNTs) and nitrogen (NCNTs) were employed for the oxygen evolution reaction (OER) in 0.1 M KOH. The catalysts were synthesized by metal-organic chemical vapor deposition using ruthenium carbonyl (Ru3(CO)12) as Ru precursor. The obtained RuO2/OCNT and RuO2/NCNT composites were characterized using TEM, H2-TPR, XRD and XPS in order probe structure-activity correlations, particularly, the effect of the different surface functional groups on the electrochemical OER performance. The electrocatalytic activity and stability of the catalysts with mean RuO2 particle sizes of 13-14 nm was evaluated by linear sweep voltammetry, cyclic voltammetry, and chronopotentiometry, showing that the generation of nitrogen-containing functional groups on CNTs was beneficial for both OER activity and stability. In the presence of RuO2, carbon corrosion was found to be significantly less severe. © 2016 Science Press and Dalian Institute of Chemical Physics. All rights reserved.
    view abstractdoi: 10.1016/j.jechem.2016.01.023
  • 2016 • 122 Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing
    Ringleb, F. and Eylers, K. and Teubner, T. and Boeck, T. and Symietz, C. and Bonse, J. and Andree, S. and Krüger, J. and Heidmann, B. and Schmid, M. and Lux-Steiner, M.
    Applied Physics Letters 108 (2016)
    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. © 2016 AIP Publishing LLC.
    view abstractdoi: 10.1063/1.4943794
  • 2016 • 121 Scalable and Environmentally Benign Process for Smart Textile Nanofinishing
    Feng, J. and Hontañón, E. and Blanes, M. and Meyer, J. and Guo, X. and Santos, L. and Paltrinieri, L. and Ramlawi, N. and Smet, L.C.P.M.D. and Nirschl, H. and Kruis, F.E. and Schmidt-Ott, A. and Biskos, G.
    ACS Applied Materials and Interfaces 8 14756-14765 (2016)
    A major challenge in nanotechnology is that of determining how to introduce green and sustainable principles when assembling individual nanoscale elements to create working devices. For instance, textile nanofinishing is restricted by the many constraints of traditional pad-dry-cure processes, such as the use of costly chemical precursors to produce nanoparticles (NPs), the high liquid and energy consumption, the production of harmful liquid wastes, and multistep batch operations. By integrating low-cost, scalable, and environmentally benign aerosol processes of the type proposed here into textile nanofinishing, these constraints can be circumvented while leading to a new class of fabrics. The proposed one-step textile nanofinishing process relies on the diffusional deposition of aerosol NPs onto textile fibers. As proof of this concept, we deposit Ag NPs onto a range of textiles and assess their antimicrobial properties for two strains of bacteria (i.e., Staphylococcus aureus and Klebsiella pneumoniae). The measurements show that the logarithmic reduction in bacterial count can get as high as ca. 5.5 (corresponding to a reduction efficiency of 99.96%) when the Ag loading is 1 order of magnitude less (10 ppm; i.e., 10 mg Ag NPs per kg of textile) than that of textiles treated by traditional wet-routes. The antimicrobial activity does not increase in proportion to the Ag content above 10 ppm as a consequence of a "saturation" effect. Such low NP loadings on antimicrobial textiles minimizes the risk to human health (during textile use) and to the ecosystem (after textile disposal), as well as it reduces potential changes in color and texture of the resulting textile products. After three washes, the release of Ag is in the order of 1 wt %, which is comparable to textiles nanofinished with wet routes using binders. Interestingly, the washed textiles exhibit almost no reduction in antimicrobial activity, much as those of as-deposited samples. Considering that a realm of functional textiles can be nanofinished by aerosol NP deposition, our results demonstrate that the proposed approach, which is universal and sustainable, can potentially lead to a wide number of applications. © 2016 American Chemical Society.
    view abstractdoi: 10.1021/acsami.6b03632
  • 2016 • 120 Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis
    Zhang, Y. and Clausmeyer, J. and Babakinejad, B. and López Córdoba, A. and Ali, T. and Shevchuk, A. and Takahashi, Y. and Novak, P. and Edwards, C. and Lab, M. and Gopal, S. and Chiappini, C. and Anand, U. and Magnani, L. and Co...
    ACS Nano 10 3214-3221 (2016)
    Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. © 2016 American Chemical Society.
    view abstractdoi: 10.1021/acsnano.5b05211
  • 2016 • 119 Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane
    Nave, A.S.C. and Mitschker, F. and Awakowicz, P. and Röpcke, J.
    Journal of Physics D: Applied Physics 49 (2016)
    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail. © 2016 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0022-3727/49/39/395206
  • 2016 • 118 Spray Deposition of Titania Films with Incorporated Crystalline Nanoparticles for All-Solid-State Dye-Sensitized Solar Cells Using P3HT
    Song, L. and Wang, W. and Körstgens, V. and Moseguí González, D. and Yao, Y. and Minar, N.K. and Feckl, J.M. and Peters, K. and Bein, T. and Fattakhova-Rohlfing, D. and Santoro, G. and Roth, S.V. and Müller-Buschbaum, P.
    Advanced Functional Materials 26 1498-1506 (2016)
    Spray coating, a simple and low-cost technique for large-scale film deposition, is employed to fabricate mesoporous titania films, which are electron-transporting layers in all-solid-state dye-sensitized solar cells (DSSCs). To optimize solar cell performance, presynthesized crystalline titania nanoparticles are introduced into the mesoporous titania films. The composite film morphology is examined with scanning electron microscopy, grazing incidence small-angle X-ray scattering, and nitrogen adsorption-desorption isotherms. The crystal phase and crystallite sizes are verified by X-ray diffraction measurements. The photovoltaic performance of all-solid-state DSSCs is investigated. The findings reveal that an optimal active layer of the all-solid-state DSSC is obtained by including 50 wt% titania nanoparticles, showing a foam-like morphology with an average pore size of 20 nm, featuring an anatase phase, and presenting a surface area of 225.2 m2 g-1. The optimized morphology obtained by adding 50 wt% presynthesized crystalline titania nanoparticles yields, correspondingly, the best solar cell efficiency of 2.7 ± 0.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/adfm.201504498
  • 2016 • 117 Surface Structure and Photocatalytic Properties of Bi2WO6 Nanoplatelets Modified by Molybdena Islands from Chemical Vapor Deposition
    Dittmer, A. and Menze, J. and Mei, B. and Strunk, J. and Luftman, H.S. and Gutkowski, R. and Wachs, I.E. and Schuhmann, W. and Muhler, M.
    Journal of Physical Chemistry C 120 18191-18200 (2016)
    We report on a novel route of preparing molybdena-modified bismuth tungstates and their successful application in the photocatalytic oxygen evolution reaction and the oxidation of glycerol. Hierarchically assembled monocrystalline Bi2WO6 nanoplatelets with a specific surface area of 10 m2/g were obtained applying a hydrothermal synthesis method using Na2WO4 and Bi(NO3)3 as precursors, followed by a solvent-free chemical vapor deposition method using Mo(CO)6, resulting in highly dispersed molybdena species. Extensive characterization using X-ray photoelectron spectroscopy, low-energy ion scattering, and Raman spectroscopy showed that microcrystalline MoO3 islands were formed on the bismuth tungstate surface that grew in height and lateral dimension with increasing loading. Correspondingly, the molybdena-modified materials were found to have favorable photocatalytic and photoelectrochemical properties in the oxygen evolution reaction and the selective oxidation of glycerol. © 2016 American Chemical Society.
    view abstractdoi: 10.1021/acs.jpcc.6b07007
  • 2016 • 116 Synthesis of nanostructured LiMn2O4 thin films by glancing angle deposition for Li-ion battery applications
    Borhani-Haghighi, S. and Khare, C. and Trócoli, R. and Dushina, A. and Kieschnick, M. and Lamantia, F. and Ludwig, Al.
    Nanotechnology 27 (2016)
    The development of electric vehicles and portable electronic devices demands lighter and thinner batteries with improved specific charge and rate capabilities. In this work, thin films of LiMn2O4 were fabricated by rf magnetron sputtering. Glancing angle deposition is introduced as a promising approach for fabrication of porous cathode thin films with 2.6 times the capacity in comparison with conventionally sputtered films of the same thickness. Surface morphology and crystallinity of the films are studied along with their electrochemical performance in an aqueous electrolyte. The glancing angle deposited films can reach a rate capability of up to 4 mA cm-2 with minimal energy loss, and a life cycle longer than 100 charge/discharge cycles. © 2016 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0957-4484/27/45/455402
  • 2016 • 115 Systematic molecular engineering of Zn-ketoiminates for application as precursors in atomic layer depositions of zinc oxide
    O'Donoghue, R. and Peeters, D. and Rogalla, D. and Becker, H.-W. and Rechmann, J. and Henke, S. and Winter, M. and Devi, A.
    Dalton Transactions 45 19012-19023 (2016)
    Molecular engineering of seven closely related zinc ketoiminates, namely, [Zn(dapki)2], [Zn(daeki)2], [Zn(epki)2], [Zn(eeki)2], [Zn(mpki)2], [Zn(meki)2], and [Zn(npki)2], leads to the optimisation of precursor thermal properties in terms of volatilisation rate, onset of volatilisation, reactivity and thermal stability. The influence of functional groups at the imine side chain of the ligands on the precursor properties is studied with regard to their viability as precursors for atomic layer deposition (ALD) of ZnO. The synthesis of [Zn(eeki)2], [Zn(epki)2] and [Zn(dapki)2] and the crystal structures of [Zn(mpki)2], [Zn(eeki)2], [Zn(dapki)2] and [Zn(npki)2] are presented. From the investigation of the physico-chemical characteristics, it was inferred that all compounds are monomeric, volatile and exhibit high thermal stability, all of which make them promising ALD precursors. Compound [Zn(eeki)2] is in terms of thermal properties the most promising Zn-ketoiminate. It is reactive towards water, possesses a melting point of 39 °C, is stable up to 24 days at 220 °C and has an extended volatilisation rate compared to the literature known Zn-ketoiminates. It demonstrated self-saturated, water assisted growth of zinc oxide (ZnO) with growth rates in the order of 1.3 Å per cycle. Moreover, it displayed a broad temperature window from TDep = 175-300 °C and is the first report of a stable high temperature (>200 °C) ALD process for ZnO returning highly promising growth rates. © 2016 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c6dt03571j
  • 2016 • 114 Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process
    Bae, D. and Palmstrom, A. and Roelofs, K. and Mei, B. and Chorkendorff, I. and Bent, S.F. and Vesborg, P.C.K.
    ACS Applied Materials and Interfaces 8 14301-14306 (2016)
    Wide-band-gap mixed-halide CH3NH3PbI3-XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently, J-V performance. A perovskite solar cell converted from PbI2 with a dense bottom layer and porous top layer achieved higher device performance than those of analogue cells with a dense PbI2 top layer. This work demonstrates a facile way to control PbI2 film configuration and morphology simply by modification of spin-coating parameters without any additional chemical or thermal post-treatment. © 2016 American Chemical Society.
    view abstractdoi: 10.1021/acsami.6b01246
  • 2016 • 113 The influence of Si as reactive bonding agent in the electrophoretic coatings of HA–Si–MWCNTs on NiTi alloys
    Khalili, V. and Khalil-Allafi, J. and Maleki-Ghaleh, H. and Paulsen, A. and Frenzel, J. and Eggeler, G.
    Journal of Materials Engineering and Performance 25 390-400 (2016)
    In this study, different composite coatings with 20 wt.% silicon and 1 wt.% multi-walled carbon nanotubes of hydroxyapatite were developed on NiTi substrate using a combination of electrophoretic deposition and reactive bonding during the sintering. Silicon was used as reactive bonding agent. During electrophoretic deposition, the constant voltage of 30 V was applied for 60 s. After deposition, samples were dried and then sintered at 850 °C for 1 h in a vacuum furnace. SEM, XRD and EDX were used to characterize the microstructure, phase and elemental identification of coatings, respectively. The SEM images of the coatings reveal a uniform and compact structure for HA–Si and HA–Si–MWCNTs. The presence of silicon as a reactive bonding agent as well as formation of new phases such as SiO2, CaSiO3 and Ca3SiO5 during the sintering process results in compact coatings and consumes produced phases from HA decomposition. Formation of the mentioned phases was confirmed using XRD analysis. The EDX elemental maps show a homogeneous distribution of silicon all over the composite coatings. Also, the bonding strength of HA–Si–MWCNTs coating is found to be 27.47 ± 1 MPa. © 2015, ASM International.
    view abstractdoi: 10.1007/s11665-015-1824-3
  • 2016 • 112 The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1−xSrxCoyFe1−yO3−δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition
    Marcano, D. and Mauer, G. and Sohn, Y.J. and Vaßen, R. and Garcia-Fayos, J. and Serra, J.M.
    Journal of Thermal Spray Technology 25 631-638 (2016)
    La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases. © 2016, ASM International.
    view abstractdoi: 10.1007/s11666-016-0383-y
  • 2016 • 111 X-ray diffraction (XRD)-studies on the temperature dependent interface reactions on hafnium, zirconium, and nickel coated monocrystalline diamonds used in grinding segments for stone and concrete machining
    Tillmann, W. and Tolan, M. and Pinho Ferreira, M. and Paulus, M. and Becke, M. and Stangier, D.
    Materialwissenschaft und Werkstofftechnik 47 1193-1201 (2016)
    Diamond impregnated metal matrix composites are the state of the art solution for the machining of mineral materials. The type of interface reactions between the metal matrix and diamond surface has an essential influence on the tool performance and durability. To improve the diamond retention, the diamonds can be coated by physical vapour deposition with metallic materials, which enforce interface reactions. Hence, this paper focuses on the investigation of the interfacial area on metal-coated monocrystalline diamonds. Hafnium and zirconium, both known as carbide forming elements, are used as coating materials. The third coating, which is used to determine its catalytic influences when applied as a physical vapour deposition (PVD)-layer, is nickel. Additionally, the coated diamond samples were heat-treated to investigate the starting point of the formation of new phases. X-ray diffraction-analyses revealed the assumed carbide formation on hafnium and zirconium coated samples. The formation temperature was identified between 800 °C and 1000 °C for hafnium and zirconium coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/mawe.201600713
  • 2016 • 110 Zinc Ferrite Photoanode Nanomorphologies with Favorable Kinetics for Water-Splitting
    Hufnagel, A.G. and Peters, K. and Müller, A. and Scheu, C. and Fattakhova-Rohlfing, D. and Bein, T.
    Advanced Functional Materials 26 4435-4443 (2016)
    The n-type semiconducting spinel zinc ferrite (ZnFe2O4) is used as a photoabsorber material for light-driven water-splitting. It is prepared for the first time by atomic layer deposition. Using the resulting well-defined thin films as a model system, the performance of ZnFe2O4 in photoelectrochemical water oxidation is characterized. Compared to benchmark α-Fe2O3 (hematite) films, ZnFe2O4 thin films achieve a lower photocurrent at the reversible potential. However, the oxidation onset potential of ZnFe2O4 is 200 mV more cathodic, allowing the water-splitting reaction to proceed at a lower external bias and resulting in a maximum applied-bias power efficiency (ABPE) similar to that of Fe2O3. The kinetics of the water oxidation reaction are examined by intensity-modulated photocurrent spectroscopy. The data indicate a considerably higher charge transfer efficiency of ZnFe2O4 at potentials between 0.8 and 1.3 V versus the reversible hydrogen electrode, attributable to significantly slower surface charge recombination. Finally, nanostructured ZnFe2O4 photoanodes employing a macroporous antimony-doped tin oxide current collector reach a five times higher photocurrent than the flat films. The maximum ABPE of these host–guest photoanodes is similarly increased. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    view abstractdoi: 10.1002/adfm.201600461
  • 2015 • 109 A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu2O thin films
    Stein, H. and Naujoks, D. and Grochla, D. and Khare, C. and Gutkowski, R. and Grützke, S. and Schuhmann, W. and Ludwig, Al.
    Physica Status Solidi (A) Applications and Materials Science 212 2798-2804 (2015)
    In thin film deposition processes, the deposition temperature is one of the crucial process parameters for obtaining films with desired properties. Usually the optimum deposition temperature is found by conducting several depositions sequentially in a time consuming process. This paper demonstrates a facile and rapid route of the simultaneous thin film deposition at six different deposition temperatures ranging from 100 to 1000 °C. Cuprite (Cu2O) was chosen for the study as this material is of interest for energy applications. The thin films are assessed for their crystallographic, microstructural, Raman scattering, and photoelectrochemical properties. The results show that the utilization of a step heater leads to the rapid optimization of thin film microstructures of an absorber material used in photoelectrochemistry. This results in a structure zone diagram for Cu2O. For a substrate temperature of 600 °C, an optimum between crystallinity and morphology occurs. © 2015 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/pssa.201532384
  • 2015 • 108 Adsorption phenomena of cubane-type tetranuclear Ni(II) complexes with neutral, thioether-functionalized ligands on Au(111)
    Heß, V. and Matthes, F. and Bürgler, D.E. and Monakhov, K.Y. and Besson, C. and Kögerler, P. and Ghisolfi, A. and Braunstein, P. and Schneider, C.M.
    Surface Science 641 210-215 (2015)
    Abstract The controlled and intact deposition of molecules with specific properties onto surfaces is an emergent field impacting a wide range of applications including catalysis, molecular electronics, and quantum information processing. One strategy is to introduce grafting groups functionalized to anchor to a specific surface. While thiols and disulfides have proven to be quite effective in combination with gold surfaces, other S-containing groups have received much less attention. Here, we investigate the surface anchoring and organizing capabilities of novel charge-neutral heterocyclic thioether groups as ligands of polynuclear nickel(II) complexes. We report on the deposition of a cubane-type {Ni<inf>4</inf>} (= [Ni(μ<inf>3</inf>-Cl)Cl(HL·S)]<inf>4</inf>) single-molecule magnet from dichloromethane solution on a Au(111) surface, investigated by scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction, both immediately after deposition and after subsequent post-annealing. The results provide strong evidence for partial decomposition of the coordination complex upon deposition on the Au(111) surface that, however, leaves the magnetic {Ni<inf>4</inf>Cl<inf>4n</inf>} (n = 1 or 2) core intact. Only post-annealing above 480 K induces further decomposition and fragmentation of the {Ni<inf>4</inf>Cl<inf>4n</inf>} core. The detailed insight into the chemisorption-induced decomposition pathway not only provides guidelines for the deposition of thioether-functionalized Ni(II) complexes on metallic surfaces but also reveals opportunities to use multidentate organic ligands decorated with thioether groups as transporters for highly unstable inorganic structures onto conducting surfaces, where they are stabilized retaining appealing electronic and magnetic properties. © 2015 Elsevier B.V.
    view abstractdoi: 10.1016/j.susc.2015.06.026
  • 2015 • 107 Atomic layer-by-layer construction of Pd on nanoporous gold via underpotential deposition and displacement reaction
    Yan, X. and Xiong, H. and Bai, Q. and Frenzel, J. and Si, C. and Chen, X. and Eggeler, G. and Zhang, Z.
    RSC Advances 5 19409-19417 (2015)
    Atomic layer-by-layer construction of Pd on nanoporous gold (NPG) has been investigated through the combination of underpotential deposition (UPD) with displacement reaction. It has been found that the UPD of Cu on NPG is sensitive to the applied potential and the deposition time. The optimum deposition potential and time were determined through potential- and time-sensitive stripping experiments. The NPG-Pd electrode shows a different voltammetric behavior in comparison to the bare NPG electrode, and the deposition potential was determined through the integrated charge control for the monolayer UPD of Cu on the NPG-Pd electrode. Five layers of Pd were constructed on NPG through the layer-by-layer deposition. In addition, the microstructure of the NPG-Pdx (x = 1, 2, 3, 4 and 5) films was probed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The microstructural observation demonstrates that the atomic layers of Pd form on the ligament surface of NPG through epitaxial growth, and have no effect on the nanoporous structure of NPG. In addition, the hydrogen storage properties of the NPG-Pdx electrodes have also been addressed. This journal is © The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c4ra17014h
  • 2015 • 106 Chemical vapor deposition and analysis of thermally insulating ZrO2 layers on injection molds
    Atakan, B. and Khlopyanova, V. and Mausberg, S. and Mumme, F. and Kandzia, A. and Pflitsch, C.
    Physica Status Solidi (C) Current Topics in Solid State Physics 12 878-885 (2015)
    High quality injection molding requires a precise control of cooling rates. Thermal barrier coating (TBC) of zirconia with a thickness of 20-40 μm on polished stainless steel molds could provide the necessary insulating effect. This paper presents results of zirconia deposition on stainless steel substrates using chemical vapor deposition (CVD) aiming to provide the process parameters for the deposition of uniform zirconia films with such a thickness. The deposition was performed with zirconium (IV) acetylacetonate (Zr(C<inf>5</inf>H<inf>7</inf>O<inf>2</inf>)<inf>4</inf>) as precursor and synthetic air as co-reactant, which allows deposition at temperatures below 600 °C. The experiments were carried out in a hot-wall reactor at pressures between 7.5 mbar and 500 mbar and in a temperature range from 450 °C to 600 °C. Important growth parameters were characterized and growth rates between 1 and 2.5 μm/h were achieved. Thick and well adhering zirconia layers of 38 μm could be produced on steel within 40 h. The transient heat transfer rate upon contact with a hot surface was also evaluated experimentally with the thickest coatings. These exhibit a good TBC performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/pssc.201510033
  • 2015 • 105 Chemical vapor deposition of Si/SiC nano-multilayer thin films
    Weber, A. and Remfort, R. and Wöhrl, N. and Assenmacher, W. and Schulz, S.
    Thin Solid Films 593 44-52 (2015)
    Stoichiometric SiC films were deposited with the commercially available single source precursor Et3SiH by classical thermal chemical vapor deposition (CVD) as well as plasma-enhanced CVD at low temperatures in the absence of any other reactive gases. Temperature-variable deposition studies revealed that polycrystalline films containing different SiC polytypes with a Si to carbon ratio of close to 1:1 are formed at 1000°C in thermal CVD process and below 100°C in the plasma-enhanced CVD process. The plasma enhanced CVD process enables the reduction of residual stress in the deposited films and offers the deposition on temperature sensitive substrates in the future. In both deposition processes the film thickness can be controlled by variation of the process parameters such as the substrate temperature and the deposition time. The resulting material films were characterized with respect to their chemical composition and their crystallinity using scanning electron microscope, energy dispersive X-ray spectroscopy (XRD), atomic force microscopy, X-ray diffraction, grazing incidence X-ray diffraction, secondary ion mass spectrometry and Raman spectroscopy. Finally, Si/SiC multilayers of up to 10 individual layers of equal thickness (about 450 nm) were deposited at 1000°C using Et3SiH and SiH4. The resulting multilayers features amorphous SiC films alternating with Si films, which feature larger crystals up to 300 nm size as measured by transmission electron microscopy as well as by XRD. XRD features three distinct peaks for Si(111), Si(220) and Si(311). © 2015 Published by Elsevier B.V.
    view abstractdoi: 10.1016/j.tsf.2015.08.042
  • 2015 • 104 Combinatorial synthesis and high-throughput characterization of the thin film materials system Co-Mn-Ge: Composition, structure, and magnetic properties
    Salomon, S. and Hamann, S. and Decker, P. and Savan, A. and Meshi, L. and Ludwig, Al.
    Physica Status Solidi (A) Applications and Materials Science 212 1969-1974 (2015)
    Co-Mn-Ge is a system of interest for magnetocaloric applications as a solid state magnetic refrigerant. A thin film materials library covering a large fraction of the Co-Mn-Ge ternary composition space was fabricated by sputter deposition. After deposition, it was annealed at 600°C for 3 h and quenched subsequently. An energy-dispersive X-ray spectroscopy and X-ray diffraction-based cluster analysis revealed the regions of existence for the CoMnGe and the Co<inf>2</inf>MnGe single phase areas. Furthermore, high intensity diffraction peaks revealed the presence of the hexagonal (Co, Mn)<inf>7</inf>Ge<inf>6</inf> phase in a region that also featured the CoMnGe phase. In this region, a non-linear, symmetric, and hysteretic shift of the (200) diffraction peak of the (Co, Mn)<inf>7</inf>Ge<inf>6</inf> phase was observed by temperature-dependent X-ray diffraction for Co<inf>23</inf>Mn<inf>33</inf>Ge<inf>44</inf>, indicating a structural phase transition taking place between 350 and 375 K upon heating and 325 and 300 K upon cooling. This coincides with a magnetic transition near 325 K from the ferromagnetic to the paramagnetic state. However, no magnetostructural coupling was identified in the temperature range from 330 to 300 K upon cooling. Magnetostriction and an undetected structural transition of the CoMnGe phase were ruled out as probable causes for the non-linear shifts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/pssa.201532075
  • 2015 • 103 Continuous electrophoretic deposition and electrophoretic mobility of ligand-free, metal nanoparticles in liquid flow
    Koenen, S. and Streubel, R. and Jakobi, J. and Schwabe, K. and Krauss, J.K. and Barcikowski, S.
    Journal of the Electrochemical Society 162 D174-D179 (2015)
    Direct current electrophoretic deposition (DC-EPD) of ligand-free metal nanoparticles in a flow-through reactor is studied by analyzing the educt colloid and the outflow of the flow through chamber while the concentration of the colloid and the strength of the electric field is varied.Metal nanoparticles synthesized by pulsed laser ablation in liquid (PLAL) are used to ensure that the colloidal nanoparticle surface is free of any ligands and that the colloid's stability and movement in an electric field is solely influenced by electrostatic forces. Electrophoretic mobility and deposition kinetics of these ligand-free nanoparticles on plain surfaces are examined for different electric field strengths. Additionally, a continuous liquid flow DC-EPD process is presented and optimized regarding deposition rate, colloid stability, and liquid flow rate. The reported parameter window for high deposition rates of nanoparticles without a negative impact on the colloid, allows to define an efficient stationary EPD process suitable for high throughput applications. © 2015 The Electrochemical Society.
    view abstractdoi: 10.1149/2.0811504jes
  • 2015 • 102 Deposition and characterization of single magnetron deposited Fe:SnOx coatings
    Kormunda, M. and Fischer, D. and Hertwig, A. and Beck, U. and Sebik, M. and Pavlik, J. and Esser, N.
    Thin Solid Films 595 200-208 (2015)
    Coatings deposited bymagnetron co-sputtering froma single RF magnetronwith a ceramic SnO2 target with iron inset in argon plasma were studied. Themass spectra of the process identified Sn+ and SnO+ species as the dominant species sputtered fromthe target, but no SnO2 + specieswere detected. The dominant positive ions in argon plasma are Ar+ species. The only detected negative ions were O-. Sputtered neutral tin related species were not detected. Iron related species were also not detected because their concentration is below the detection limit. The concentration of iron dopant in the tin oxide coatings was controlled by the RF bias applied on the substrate holder while the discharge pressure also has some influence. The iron concentration was in the range from 0.9 at.% up to 19 at.% increasing with the substrate bias while the sheet resistivity decreases. The stoichiometry ratio of O/(Sn+Fe) in the coatings increased from 1.7 up to 2 in dependence on the substrate bias from floating bias (-5 V) up to-120 V of RF self-bias, respectively. The tin in the coatings was mainly bonded in Sn4+ state and iron was mainly in Fe2+ state when other tin bonding states were detected only in a small amounts. Iron bonding states in contrary to elemental compositions of the coatings were not influenced by the RF bias applied on the substrate. The coatings showed high transparency in the visible spectral range. However, an increased metallic behavior could be detected by using a higher RF bias for the deposition. The X-ray diffraction patterns and electron microscopy pictures made on the coatings confirmed the presence of an amorphous phase. © 2015 Published by Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.tsf.2015.11.009
  • 2015 • 101 Friction surfacing of Ti-6Al-4V: Process characteristics and deposition behaviour at various rotational speeds
    Fitseva, V. and Krohn, H. and Hanke, S. and dos Santos, J.F.
    Surface and Coatings Technology 278 56-63 (2015)
    By the process of friction surfacing, coatings are generated from metallic materials at temperatures below their melting range. The high degree of deformation while depositing leads to grain refinement in the microstructure, which has a positive effect on the mechanical properties of the layer. The applicability of the process has been described for a large number of materials. The deposition of Ti-6Al-4V has been reported in one publication but was not systematically studied. Therefore, the main aims of the present work are to define the process parameter fields for the deposition of Ti-6Al-4V leading to flash and defect free coatings and associate them with geometric features of the deposited layer.This investigation has shown that Ti-6Al-4V coatings can be effectively deposited onto a Ti-6Al-4V substrate by friction surfacing. A wide range of process parameters was established in which coatings of high quality have been obtained. The consumption rate control has been implemented as an efficient mode for the deposition of Ti-6Al-4V coatings. Temperature measurements at the coating interface have been accomplished showing that the coating material has been deformed in the β-phase. Furthermore, the homogeneity of the coating surface has been established to be a function of the rotational speed. The coatings exhibited a defect-free bond at the interface with the substrate. Two process parameter ranges with respect to the flash formation have been established. One of them enables flash-free coatings and the other generates coatings with flash formation on the retreating side, which can be controlled by the rotational and deposition speeds. Moreover, an increase in the rotational speed has been shown to lead to an increase in the coating thickness and width as well as an increase in the deposition efficiency up to 39 %. © 2015 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2015.07.039
  • 2015 • 100 Fundamentals and Applications of Reflection FTIR Spectroscopy for the Analysis of Plasma Processes at Materials Interfaces
    Grundmeier, G. and von Keudell, A. and de los Arcos, T.
    Plasma Processes and Polymers 12 926--940 (2015)
    Plasma processes are widely used for the deposition of thin films and/or the functionalization of material surfaces and interfaces ranging from inorganic to organic structures. The characterization of such plasma-modified surfaces is challenging and most efficiently performed by optical methods, such as FTIR-spectroscopy and related techniques. The present review aims at bridging the gap between optical spectroscopy fundamentals and the application of such experimental techniques in plasma surface science and engineering. The first part of the review covers the most relevant theoretical aspects of different reflection FTIR-spectroscopy approaches; the second part presents the different applications of these principles for the investigation of surface processes induced by plasma. The applications take into account interaction of plasma with metal surfaces, semiconductors, and polymeric materials.
    view abstractdoi: 10.1002/ppap.201500087
  • 2015 • 99 How electrophoretic deposition with ligand-free platinum nanoparticles affects contact angle
    Heinemann, A. and Koenen, S. and Schwabe, K. and Rehbock, C. and Barcikowski, S.
    Key Engineering Materials 654 218-223 (2015)
    Electrophoretic deposition of ligand-free platinum nanoparticles has been studied to elucidate how wettability, indicated by contact angle measurements, is linked to vital parameters of the electrophoretic deposition process. These parameters, namely the colloid concentration, electric field strength and deposition time, have been systematically varied in order to determine their influence on the contact angle. Additionally, scanning electron microscopy has been used to confirm the homogeneity of the achieved coatings. © (2015) Trans Tech Publications, Switzerland.
    view abstractdoi: 10.4028/www.scientific.net/KEM.654.218
  • 2015 • 98 Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles
    Ivanova, A.A. and Surmenev, R.A. and Surmeneva, M.A. and Mukhametkaliyev, T. and Loza, K. and Prymak, O. and Epple, M.
    Applied Surface Science 329 212-218 (2015)
    In this work, we describe fabrication techniques used to prepare a multifunctional biocomposite based on a hydroxyapatite (HA) coating and silver nanoparticles (AgNPs). AgNPs synthesized by a wet chemical reduction method were deposited on Ti substrates using a dripping/drying method followed by deposition of calcium phosphate (CaP) coating via radio-frequency (RF) magnetron sputter-deposition. The negatively charged silver nanoparticles (zeta potential -21 mV) have a spherical shape with a metallic core diameter of 50 ± 20 nm. The HA coating was deposited as a dense nanocrystalline film over a surface of AgNPs. The RF-magnetron sputter deposition of HA films on the AgNPs layer did not affect the initial content of AgNPs on the substrate surface as well as NPs size and shape. SEM cross-sectional images taken using the backscattering mode revealed a homogeneous layer of AgNPs under the CaP layer. The diffraction patterns from the coatings revealed reflexes of crystalline HA and silver. The concentration of Ag ions released from the biocomposites after 7 days of immersion in phosphate and acetate buffers was estimated. The obtained results revealed that the amount of silver in the solutions was 0.27 ± 0.02 μg mL-1 and 0.54 ± 0.02 μg mL-1 for the phosphate and acetate buffers, respectively, which corresponded well with the minimum inhibitory concentration range known for silver ions in literature. Thus, this work establishes a new route to prepare a biocompatible layer using embedded AgNPs to achieve a local antibacterial effect. © 2015 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.apsusc.2014.12.153
  • 2015 • 97 Influence of in-situ and postannealing technique on tribological performance of NiTi SMA thin films
    Tillmann, W. and Momeni, S.
    Surface and Coatings Technology 276 286-295 (2015)
    Magnetron sputtered NiTi thin films were crystallized through two convenient techniques: (i) postannealing and (ii) in-situ annealing during the deposition. The annealing parameters (temperature and time) were kept constant by employing each technique. The microstructure, morphology, phase transformation behavior, mechanical and tribological properties of these thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), 4-point probe resistivity measurement, nanoindentation test, pin-on-disc, scratch test and three dimensional (3D) optical microscopy. The results show how postannealing and in-situ annealing techniques can differently affect properties of NiTi thin films in spite of employing similar annealing temperature and time. © 2015 Elsevier B.V..
    view abstractdoi: 10.1016/j.surfcoat.2015.07.012
  • 2015 • 96 Inhibition of interfacial oxidative degradation during SiOx plasma polymer barrier film deposition on model organic substrates
    Ozkaya, B. and Mitschker, F. and Ozcan, O. and Awakowicz, P. and Grundmeier, G.
    Plasma Processes and Polymers 12 392-397 (2015)
    Interfacial processes during the initial stages of SiO<inf>x</inf>-like plasma-polymer barrier coating deposition were investigated by means of polarization modulation infrared reflection-absorption spectroscopy, and the resulting effect on defect densities were studied by cyclic voltammetry. Octadecanethiol self-assembled monolayers on Au-film coated wafers served as sensor layers to investigate interface chemistry during the plasma deposition. Both the spectroscopic and electrochemical data revealed that a thin SiOCH interlayer could reduce oxidative degradation of the SAM during subsequent deposition of the SiO<inf>x</inf> barrier film from an oxygen-rich plasma phase. The present electrochemical investigation confirmed effective inhibition of interfacial oxidative degradation processes of an aliphatic polymer in the presence of a SiOCH interfacial layer. Interfacial processes during the initial stages of SiO<inf>x</inf>-like plasma barrier-coating deposition are investigated. Self-assembled monolayers on Au-film coated wafers serve as sensor layers. SiOCH-type organic interlayers are found to oxidize and reduce surface degradation processes upon subsequent barrier film deposition from oxygen-rich gas mixture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/ppap.201400105
  • 2015 • 95 Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 solar cells
    Yin, G. and Steigert, A. and Andrae, P. and Goebelt, M. and Latzel, M. and Manley, P. and Lauermann, I. and Christiansen, S. and Schmid, M.
    Applied Surface Science 355 800-804 (2015)
    Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se2 (CIGSe) solar cells is investigated. X-ray photoelectron spectroscopy results show that Ag nanoparticles underneath a Sn:In2O3 back contact could not be thermally passivated even at a low substrate temperature of 440 °C during CIGSe deposition. It is shown that a 50 nm thick Al2O3 film prepared by atomic layer deposition is able to block the diffusion of Ag, clearing the thermal obstacle in utilizing Ag nanoparticles as a back reflector in ultra-thin CIGSe solar cells. Via 3-D finite element optical simulation, it is proved that the Ag nanoparticles show the potential to contribute the effective absorption in CIGSe solar cells. © 2015 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.apsusc.2015.07.195
  • 2015 • 94 Interface engineering and nanoscale characterization of Zn(S,O) alternative buffer layer for CIGS thin film solar cells
    Soni, P. and Cojocaru-Miredin, O. and Raabe, D.
    2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015 (2015)
    The buffer layers in Cu(In,Ga)Se2 solar cells play a crucial role in device performance, although their thickness is only a few tens of nanometers. Moreover, often Zn(S,O) alternative buffer layers have been studied in view of their structure, band alignment, and optical properties, but not much work exists on their nanoscale chemical properties. This work focuses on the chemical characterization of Zn(S,O) using x-ray photoelectron spectroscopy for determination of the Zn(S,O) and Cu(In,Ga)Se2 depth composition, and atom probe tomography for probing the nano-scale chemical fluctuations at the Zn(S,O)/Cu(In,Ga)Se2 interface. The Zn(O,S) buffer layer was deposited by RF magnetron sputtering. The aim is to study the nanoscale concentration changes and atomic interdiffusion between CIGS and Zn(S,O) after sputter deposition at room temperature and after post-deposition heat treatment at 200°C. © 2015 IEEE.
    view abstractdoi: 10.1109/PVSC.2015.7355889
  • 2015 • 93 Metal-organic CVD of Y2O3 Thin Films using Yttrium tris-amidinates
    Karle, S. and Dang, V.-S. and Prenzel, M. and Rogalla, D. and Becker, H.-W. and Devi, A.
    Chemical Vapor Deposition 21 335-342 (2015)
    Thin films of Y2O3 are deposited on Si(100) and Al2O3 (0001) substrates via metal-organic (MO)CVD for the first time using two closely related yttrium tris-amidinate compounds as precursors in the presence of oxygen in the temperature range 400-700 °C. The structural, morphological, and compositional features of the films are investigated in detail. At deposition temperatures of 500 °C and higher both the precursors yield polycrystalline Y2O3 thin films in the cubic phase. The compositional analysis revealed the formation of nearly stoichiometric Y2O3. The optical band gaps are estimated using UV-Vis spectroscopy. Preliminary electrical measurements are performed in the form of a metal oxide semiconductor (MOS) structure of Al/Y2O3/p-Si/Ag. Leakage currents and dielectric constants are also determined. Y2O3 thin films are grown by MOCVD at 400-700 °C using yttrium amidinate presursors in the presence of oxygen. The films, which are polycrystalline in case of deposition temperatures &gt; 400 °C, are dense and exhibit good purity and homogeneity. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/cvde.201507189
  • 2015 • 92 Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
    Keuter, T. and Menzler, N.H. and Mauer, G. and Vondahlen, F. and Vaßen, R. and Buchkremer, H.P.
    Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films 33 (2015)
    Atomic layer deposition (ALD) is a technique for depositing thin films of materials with a precise thickness control and uniformity using the self-limitation of the underlying reactions. Usually, it is difficult to predict the result of the ALD process for given external parameters, e.g., the precursor exposure time or the size of the precursor molecules. Therefore, a deeper insight into ALD by modeling the process is needed to improve process control and to achieve more economical coatings. In this paper, a detailed, microscopic approach based on the model developed by Yanguas-Gil and Elam is presented and additionally compared with the experiment. Precursor diffusion and second-order reaction kinetics are combined to identify the influence of the porous substrate's microstructural parameters and the influence of precursor properties on the coating. The thickness of the deposited film is calculated for different depths inside the porous structure in relation to the precursor exposure time, the precursor vapor pressure, and other parameters. Good agreement with experimental results was obtained for ALD zirconiumdioxide (ZrO2) films using the precursors tetrakis(ethylmethylamido)zirconium and O2. The derivation can be adjusted to describe other features of ALD processes, e.g., precursor and reactive site losses, different growth modes, pore size reduction, and surface diffusion. © 2014 Author(s).
    view abstractdoi: 10.1116/1.4892385
  • 2015 • 91 Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: Improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro
    Surmeneva, M.A. and Kleinhans, C. and Vacun, G. and Kluger, P.J. and Schönhaar, V. and Müller, M. and Hein, S.B. and Wittmar, A. and Ulbricht, M. and Prymak, O. and Oehr, C. and Surmenev, R.A.
    Colloids and Surfaces B: Biointerfaces 135 386-393 (2015)
    Thin radio-frequency magnetron sputter deposited nano-hydroxyapatite (HA) films were prepared on the surface of a Fe-tricalcium phosphate (Fe-TCP) bioceramic composite, which was obtained using a conventional powder injection moulding technique. The obtained nano-hydroxyapatite coated Fe-TCP biocomposites (nano-HA-Fe-TCP) were studied with respect to their chemical and phase composition, surface morphology, water contact angle, surface free energy and hysteresis. The deposition process resulted in a homogeneous, single-phase HA coating. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells (hMSCs) was studied using biological short-term tests in vitro. The surface of the uncoated Fe-TCP bioceramic composite showed an initial cell attachment after 24 h of seeding, but adhesion, proliferation and growth did not persist during 14 days of culture. However, the HA-Fe-TCP surfaces allowed cell adhesion, and proliferation during 14 days. The deposition of the nano-HA films on the Fe-TCP surface resulted in higher surface energy, improved hydrophilicity and biocompatibility compared with the surface of the uncoated Fe-TCP. Furthermore, it is suggested that an increase in the polar component of the surface energy was responsible for the enhanced cell adhesion and proliferation in the case of the nano-HA-Fe-TCP biocomposites. © 2015 Elsevier B.V.
    view abstractdoi: 10.1016/j.colsurfb.2015.07.057
  • 2015 • 90 New Au-Cu-Al thin film shape memory alloys with tunable functional properties and high thermal stability
    Buenconsejo, P.J.S. and Ludwig, Al.
    Acta Materialia 85 378-386 (2015)
    An Au-Cu-Al thin film materials library prepared by combinatorial sputter-deposition was characterized by high-throughput experimentation in order to identify and assess new shape memory alloys (SMAs) in this alloy system. Automated resistance measurements during thermal cycling between -20 and 250 °C revealed a wide composition range that undergoes reversible phase transformations with martensite transformation start temperatures, reverse transformation finish temperatures and transformation hysteresis ranging from -15 to 149 °C, 5 to 185 °C and 8 to 60 K, respectively. High-throughput X-ray diffraction analysis of the materials library confirmed that the phase-transforming compositions can be attributed to the existence of the β-AuCuAl parent phase and its martensite product. The formation of large amount of phases based on face-centered cubic (Au-Cu), Al-Cu and Al-Au is responsible for limiting the range of phase-transforming compositions. Selected alloys in this system show excellent thermal cyclic stability of the phase transformation. The functional properties of these alloys, combined with the inherent properties of Au-based alloys, i.e. aesthetic value, oxidation and corrosion resistance, makes them attractive as smart materials for a wide range of applications, including applications as SMAs for elevated temperatures in harsh environment. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    view abstractdoi: 10.1016/j.actamat.2014.11.035
  • 2015 • 89 Novel opportunities for thermal spray by PS-PVD
    Mauer, G. and Jarligo, M.O. and Rezanka, S. and Hospach, A. and Vaßen, R.
    Surface and Coatings Technology 268 52-57 (2015)
    Plasma spray-physical vapor deposition (PS-PVD) is a novel coating process based on plasma spraying. In contrast to conventional methods, deposition takes place not only from liquid splats but also from nano-sized clusters and from the vapor phase. This offers new opportunities to obtain advanced microstructures and thus to comply with the growing demands on modern functional coatings. Thin and dense ceramic coatings as well as highly porous columnar structures can be achieved, offering novel opportunities for the application of thermal spray technology. This study describes process conditions, which are relevant for the formation of particular microstructures in the PS-PVD process. Following the structure of the process, the feedstock treatment close to the plasma source, plasma particle interaction in the open jet and the formation of coating microstructures on the substrate are covered. Calculated results on the plasma particle interaction under PS-PVD process conditions were found to be in good agreement with OES results and microstructural observations. They show that the feedstock treatment along the very first trajectory segment between injector and jet expansion plays a key role. Varying the plasma parameters, feedstock treatment can be controlled to a broad extent. Consequently, the manifold nature of the feedstock species arriving on the substrate enables to achieve various coating microstructures. As examples, application specific features of PS-PVD coatings are reported for strain-tolerant thermal barrier coatings as well as for gas-tight oxygen transport membranes with high mixed electronic-ionic conductivity. © 2014 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2014.06.002
  • 2015 • 88 Phase transitions during formation of Ag nanoparticles on In2S3 precursor layers
    Liu, Y. and Fu, Y. and Dittrich, T. and Sáez-Araoz, R. and Schmid, M. and Hinrichs, V. and Lux-Steiner, M.C. and Fischer, C.-H.
    Thin Solid Films 590 54-59 (2015)
    Phase transitions have been investigated for silver deposition onto In<inf>2</inf>S<inf>3</inf> precursor layers by spray chemical vapor deposition from a trimethylphosphine (hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe<inf>3</inf>)) solution. The formation of Ag nanoparticles (Ag NPs) on top of the semiconductor layer set on concomitant with the formation of AgIn<inf>5</inf>S<inf>8</inf>. The increase of the diameter of Ag NPs was accompanied by the evolution of orthorhombic AgInS<inf>2</inf>. The formation of Ag<inf>2</inf>S at the interface between Ag NPs and the semiconductor layer was observed. Surface photovoltage spectroscopy indicated charge separation and electronic transitions in the ranges of corresponding band gaps. The phase transition approach is aimed to be applied for the formation of plasmonic nanostructures on top of extremely thin semiconducting layers. © 2015 Elsevier B.V.
    view abstractdoi: 10.1016/j.tsf.2015.07.021
  • 2015 • 87 Role of developing L10 chemical order on the (0 0 1)-texture formation of (Fe1 - XCux)Pt films grown on amorphous substrates
    Scheibel, F. and Haering, F. and Ziemann, P. and Wiedwald, U.
    Journal of Physics D: Applied Physics 48 (2015)
    We study the technologically important (0 0 1)-texture formation in 10 nm thick (Fe0.9Cu0.1)52Pt48 and, as reference, Fe49Pt51 alloy films. The samples are grown on SiO2(200 nm)/Si(0 0 1) substrates at ambient temperature by pulsed laser deposition. Subsequent rapid thermal processing (RTP) at 650 °C for various time steps drives the initially nanocrystalline and chemically disordered films into the tetragonal L10 phase accompanied by a strong (0 0 1)-texture leading to perpendicular magnetic anisotropy. The fundamental role of the chemical order during short-time annealing as an additional source of strain in the films is experimentally addressed. The structural and magnetic results indicate selective grain growth leading to the (0 0 1)-texture. Strongly prolonged annealing, however, leads to a reorientation of grains towards the (1 1 1)-texture pointing to the increasing importance of surface energies when the initial strain has released. © 2015 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0022-3727/48/8/085001
  • 2015 • 86 Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts
    Marzun, G. and Nakamura, J. and Zhang, X. and Barcikowski, S. and Wagener, P.
    Applied Surface Science 348 75-84 (2015)
    In the literature many investigations on colloidal stability and size control of gold nanoparticles are shown but less for ligand-free palladium nanoparticles, which can be promising materials in various applications. Palladium nanoparticles are perspective materials for a manifold of energy application like photo- and electrocatalysis or hydrogen storage. For this purpose, size-controlled nanoparticles with clean surfaces and facile immobilization on catalyst supports are wanted. Laser ablation in saline solution yields ligand-free, charged colloidal palladium nanoparticles that are supported by titania and graphene nanosheets as model systems for photo- and electrocatalysis, respectively. By adjusting the ionic strength during laser ablation in liquid, it is possible to control stability and particle size without compromising subsequent nanoparticle adsorption of supporting materials. A quantitative deposition of nearly 100% yield with up to 18 wt% nanoparticle load was achieved. The average size of the laser-generated nanoparticles remains the same after immobilization on a support material, in contrast to other preparation methods of catalysts. The characterization by X-ray photoelectron spectroscopy reveals a redox reaction between the immobilized nanoparticles and the graphene support. © 2015 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.apsusc.2015.01.108
  • 2015 • 85 Spectroscopic and Microscopic Investigations of Degradation Processes in Polymer Surface-Near Regions during the Deposition of SiOx Films
    Mitschker, F. and Dietrich, J. and Ozkaya, B., Dr. and De los Arcos, T., Dr. and Giner, I., Dr. and Awakowicz, P., Prof. and Grundmeier, G., Prof.
    Plasma Processes and Polymers 12 1002-1009 (2015)
    Atomic oxygen densities and fluences in a microwave plasma are determined by means of optical emission spectroscopy for different oxygen to hexamethyldisiloxane (HMDSO) ratios during deposition of SiO<inf>x</inf> and SiO<inf>x</inf>C<inf>y</inf>H<inf>z</inf> like coatings on molecularly defined organic surfaces. The plasma coatings are deposited on octadecanethiol self-assembled monolayers that serve as a sensor layer. They are used for tracing the interfacial changes induced during plasma deposition as a function of the O<inf>2</inf> to HMDSO ratio and absolutely quantified atomic oxygen fluence. The interfacial chemical changes are monitored by means of polarization modulation IR reflection-absorption spectroscopy. The data reveal that significant oxidative degradation of the sensor layer is reached for exposure to an atomic oxygen fluence of 1.0 · 1022 m-2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/ppap.201500085
  • 2015 • 84 Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering
    Bünting, A. and Uhlenbruck, S. and Sebold, D. and Buchkremer, H.P. and Vaßen, R.
    ACS Applied Materials and Interfaces 7 22594-22600 (2015)
    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4 + C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries. © 2015 American Chemical Society.
    view abstractdoi: 10.1021/acsami.5b07090
  • 2015 • 83 Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: Structure-activity relationship
    Guo, Y. and Gu, D. and Jin, Z. and Du, P.-P. and Si, R. and Tao, J. and Xu, W.-Q. and Huang, Y.-Y. and Senanayake, S. and Song, Q.-S. and Jia, C.-J. and Schüth, F.
    Nanoscale 7 4920-4928 (2015)
    Uniform Au nanoparticles (∼2 nm) with narrow size-distribution (standard deviation: 0.5-0.6 nm) supported on both hydroxylated (Fe-OH) and dehydrated iron oxide (Fe-O) have been prepared by either deposition-precipitation (DP) or colloidal-deposition (CD) methods. Different structural and textural characterizations were applied to the dried, calcined and used gold-iron oxide samples. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) showed high homogeneity in the supported Au nanoparticles. The ex situ and in situ X-ray absorption fine structure (XAFS) characterization monitored the electronic and short-range local structure of active gold species. The synchrotron-based in situ X-ray diffraction (XRD), together with the corresponding temperature-programmed reduction by hydrogen (H<inf>2</inf>-TPR), indicated a structural evolution of the iron-oxide supports, correlating to their reducibility. An inverse order of catalytic activity between DP (Au/Fe-OH < Au/Fe-O) and CD (Au/Fe-OH > Au/Fe-O) was observed. Effective gold-support interaction results in a high activity for gold nanoparticles, locally generated by the sintering of dispersed Au atoms on the oxide support in the DP synthesis, while a hydroxylated surface favors the reactivity of externally introduced Au nanoparticles on Fe-OH support for the CD approach. This work reveals why differences in the synthetic protocol translate to differences in the catalytic performance of Au/FeO<inf>x</inf> catalysts with very similar structural characteristics in CO oxidation. © The Royal Society of Chemistry 2015.
    view abstractdoi: 10.1039/c4nr06967f
  • 2015 • 82 Using the acetylacetonates of zinc and aluminium for the Metalorganic Chemical Vapour Deposition of aluminium doped zinc oxide films
    Nebatti, A. and Pflitsch, C. and Curdts, B. and Atakan, B.
    Materials Science in Semiconductor Processing 39 467-475 (2015)
    Metalorganic Chemical Vapour Deposition is a promising method for the growth of thin aluminium doped zinc oxide films (ZnO:Al), a material with potential application as transparent conducting oxide (TCO), e.g. for the use as front electrode in solar cells. For the low-cost deposition, the choice of the precursors is extremely important. Here we present the deposition of quite homogeneous films from the acetylacetonates of zinc and aluminium that are rather cheap, commercially available and easy to handle. A user-made CVD-reactor activating the deposition process by the light of halogen lamps was used for film deposition. Well-ordered films with an aluminium content between 0 and 8% were grown on borosilicate glass and Si(100). On both types of substrate, the films are crystalline and show a preferred orientation along the (002)-direction. The 0.3 to 0.5 μm thick films are highly transparent in the visible region. The best films show a low electric resistivity between 2.4 and 8 mΩ cm. © 2015 Elsevier Ltd. All rights reserved.
    view abstractdoi: 10.1016/j.mssp.2015.05.053
  • 2014 • 81 Adherence of human mesenchymal stem cells on Ti and TiO2 nano-columnar surfaces fabricated by glancing angle sputter deposition
    Motemani, Y. and Greulich, C. and Khare, C. and Lopian, M. and Buenconsejo, P.J.S. and Schildhauer, T.A. and Ludwig, Al. and Köller, M.
    Applied Surface Science 292 626-631 (2014)
    The interaction of human mesenchymal stem cells (hMSCs) with Ti and TiO2 nano-columnar surfaces fabricated using glancing angle sputter deposition was investigated. The adherence and proliferation of hMSCs on different nano-columnar surfaces, including vertical columns, slanted columns and chevrons, were examined with calcein-acetoxymethyl ester fluorescence staining and scanning electron microscopy. For comparison, adherence of hMSCs on compact, dense films was also studied. After 24 h and 7 days, adherent and viable cells were observed on both, Ti nano-columns as well as dense Ti films, which confirms the biocompatibility of these nanostructures. Very small pseudopodia with width of approximately 20-35 nm and length varying from 20 to 200 nm were observed between the nano-columns, independent of the type of the nano-columnar morphology. Large inter-column spacing and effectively increased surface area make these nanostructures promising candidates for bio-functionalization or drug loading on the surface of Ti-based implants. © 2013 Elsevier B.V.
    view abstractdoi: 10.1016/j.apsusc.2013.12.022
  • 2014 • 80 Analysis of stress gradients in physical vapour deposition multilayers by X-ray diffraction at fixed depth intervals
    Fischer, G. and Selvadurai, U. and Nellesen, J. and Sprute, T. and Tillmann, W.
    Journal of Applied Crystallography 47 335-345 (2014)
    The objective of this article is to develop and apply a model for the design and evaluation of X-ray diffraction experiments to measure phase-specific residual stress profiles in multilayer systems. Using synchrotron radiation and angle-dispersive diffraction, the stress measurements are performed on the basis of the sin2ψ method. Instead of the traditional Ω or χ mode, the experiments are carried out by a simultaneous variation of the goniometer angles χ, Ω and φG to ensure that the penetration and information depth and the measuring direction φ remain unchanged when the polar angle ψ is varied. The applicability of this measuring and evaluation strategy is demonstrated by the example of a multilayer system consisting of Ti and TiAlN layers, alternately deposited on a steel substrate by means of physical vapour deposition. © 2014 International Union of Crystallography.
    view abstractdoi: 10.1107/S1600576713030951
  • 2014 • 79 Atomic layer deposition of TiO2 and ZrO2 thin films using heteroleptic guanidinate precursors
    Kaipio, M. and Blanquart, T. and Banerjee, M. and Xu, K. and Niinistö, J. and Longo, V. and Mizohata, K. and Devi, A. and Ritala, M. and Leskelä, M.
    Chemical Vapor Deposition 20 209-216 (2014)
    In this study the atomic layer deposition (ALD) of TiO2 and ZrO2 using two heteroleptic amido-guanidinate precursors, [Ti(NEtMe)3(guan-NEtMe)] and [Zr(NEtMe)3(guan-NEtMe)], together with water or ozone as oxygen sources, are investigated. All processes exhibit self-limiting growth at a deposition temperature of 275°C. The zirconium precursor especially gives high growth rates (0.8/1.0Å per cycle with H2O/O3). The films are also relatively smooth, as determined by atomic force microscopy (AFM). The composition of the films is examined using X-ray photoelectron spectroscopy (XPS) and time of flight elastic recoil detection analysis (TOF-ERDA). When using ozone as the oxygen source the films present very high purity. The results are compared and discussed with respect to earlier studies on guanidinate, as well as homoleptic amido precursors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/cvde.201407115
  • 2014 • 78 Atomic-Layer-Deposited Aluminum and Zirconium Oxides for Surface Passivation of TiO2 in High-Efficiency Organic Photovoltaics
    Vasilopoulou, M. and Georgiadou, D.G. and Soultati, A. and Boukos, N. and Gardelis, S. and Palilis, L.C. and Fakis, M. and Skoulatakis, G. and Kennou, S. and Botzakaki, M. and Georga, S. and Krontiras, C.A. and Auras, F. and Fatta...
    Advanced Energy Materials 4 (2014)
    The reduction in electronic recombination losses by the passivation of surfaces is a key factor enabling high-efficiency solar cells. Here a strategy to passivate surface trap states of TiO<inf>2</inf> films used as cathode interlayers in organic photovoltaics (OPVs) through applying alumina (Al<inf>2</inf>O<inf>3</inf>) or zirconia (ZrO<inf>2</inf>) insulating nanolayers by thermal atomic layer deposition (ALD) is investigated. The results suggest that the surface traps in TiO<inf>2</inf> are oxygen vacancies, which cause undesirable recombination and high electron extraction barrier, reducing the open-circuit voltage and the short-circuit current of the complete OPV device. It is found that the ALD metal oxides enable excellent passivation of the TiO<inf>2</inf> surface followed by a downward shift of the conduction band minimum. OPV devices based on different photoactive layers and using the passivated TiO<inf>2</inf> electron extraction layers exhibit a significant enhancement of more than 30% in their power conversion efficiencies compared to their reference devices without the insulating metal oxide nanolayers. This is a result of significant suppression of charge recombination and enhanced electron extraction rates at the TiO<inf>2</inf>/ALD metal oxide/organic interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/aenm.201400214
  • 2014 • 77 Characterization of Ta-Ti Thin Films by using a Scanning Droplet Cell in Combination with AC Linear Sweep Voltammetry
    Fan, M. and Sliozberg, K. and La Mantia, F. and Miyashita, N. and Hagymási, M. and Schnitter, C. and Ludwig, Al. and Schuhmann, W.
    ChemElectroChem 1 903-908 (2014)
    A binary Ta-Ti thin film composition-spread materials library is prepared through magnetron sputter co-deposition. An automated microelectrochemical investigation on selected surface areas, corresponding to a concentration gradient of Ti varying from 0.5 to 36at%, is achieved by using a scanning droplet cell. Simultaneously, during the anodic oxide growth, a small alternating current (AC) voltage is superimposed on the increasing direct current (DC) potential in order to record the capacitance of the mixed-metal oxide by using alternating current linear sweep voltammetry (AC-LSV). Valve metal behavior, with the current stabilizing after an initial rapid increase, is found for all investigated compositions. AC-LSV allows the ratio of the formation factor to the relative permittivity for different compositions to be calculated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/celc.201300153
  • 2014 • 76 Columnar-Structured Mg-Al-Spinel Thermal Barrier Coatings (TBCs) by Suspension Plasma Spraying (SPS)
    Schlegel, N. and Ebert, S. and Mauer, G. and Vaßen, R.
    Journal of Thermal Spray Technology 24 144-151 (2014)
    The suspension plasma spraying (SPS) process has been developed to permit the feeding of sub-micrometer-sized powder into the plasma plume. In contrast to electron beam-physical vapor deposition and plasma spray-physical vapor deposition, SPS enables the cost-efficient deposition of columnar-structured coatings. Due to their strain tolerance, these coatings play an important role in the field of thermal barrier coatings (TBCs). In addition to the cost-efficient process, attention was turned to the TBC material. Nowadays, yttria partially stabilized zirconia (YSZ) is used as standard TBC material. However, its long-term application at temperatures higher than 1200 °C is problematic. At these high temperatures, phase transitions and sintering effects lead to the degradation of the TBC system. To overcome those deficits of YSZ, Mg-Al-spinel was chosen as TBC material. Even though it has a lower melting point (~2135 °C) and a higher thermal conductivity (~2.5 W/m/K) than YSZ, Mg-Al-spinel provides phase stability at high temperatures in contrast to YSZ. The Mg-Al-spinel deposition by SPS resulted in columnar-structured coatings, which have been tested for their thermal cycling lifetime. Furthermore, the influence of substrate cooling during the spraying process on thermal cycling behavior, phase composition, and stoichiometry of the Mg-Al-spinel has been investigated. © 2014, ASM International.
    view abstractdoi: 10.1007/s11666-014-0138-6
  • 2014 • 75 CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering
    Bagcivan, N. and Bobzin, K. and Ludwig, Al. and Grochla, D. and Brugnara, R.H.
    Thin Solid Films 572 153-160 (2014)
    Nanolaminate coatings based on transition metal nitrides such as CrN, AlN and TiN deposited via physical vapor deposition (PVD) have shown great advantage as protective coatings on tools and components subject to high loads in tribological applications. By varying the individual layer materials and their thicknesses it is possible to optimize the coating properties, e.g. hardness, Young's modulus and thermal stability. One way for further improvement of coating properties is the use of advanced PVD technologies. High power pulsed magnetron sputtering (HPPMS) is an advancement of pulsed magnetron sputtering (MS). The use of HPPMS allows a better control of the energetic bombardment of the substrate due to the higher ionization degree of metallic species. It provides an opportunity to influence chemical and mechanical properties by varying the process parameters. The present work deals with the development of CrN/AlN nanolaminate coatings in an industrial scale unit by using two different PVD technologies. Therefore, HPPMS and mfMS (middle frequency magnetron sputtering) technologies were used. The bilayer period Λ, i.e. the thickness of a CrN/AlN double layer, was varied between 6.2nm and 47.8 nm by varying the rotational speed of the substrate holders. In a second step the highest rotational speed was chosen and further HPPMS CrN/AlN coatings were deposited applying different HPPMS pulse lengths (40, 80, 200 μs) at the same mean cathode power and frequency. Thickness, morphology, roughness and phase composition of the coatings were analyzed by means of scanning electron microscopy (SEM), confocal laser microscopy, and X-ray diffraction (XRD), respectively. The chemical composition was determined using glow discharge optical emission spectroscopy (GDOES). Detailed characterization of the nanolaminate was conducted by transmission electron microscopy (TEM). The hardness and the Young's modulus were analyzed by nanoindentation measurements. The residual stress was determined via Si microcantilever curvature measurements. The phase analysis revealed the formation of h-Cr2N, c-CrN and c-AlN mixed phases for the mfMS CrN/AlN coatings, whereas the HPPMS coatings exhibited only cubic phases (c-CrN, c-AlN). A hardness of 31.0 GPa was measured for the HPPMS coating with a bilayer period of 6.2 nm. The decrease of the HPPMS pulse length at constant mean power leads to a considerable increase of the cathode current on the Cr and Al target associated with an increased ion flux towards the substrate. Furthermore, it was observed that the deposition rate of HPPMS CrN/AlN decreases with shorter pulse lengths, so that a CrN/AlN coating with a bilayer period of 2.9 nm, a high hardness of 40.8 GPa and a high compressive stress (- 4.37 GPa) was achieved using a short pulse length of 40 μs. © 2014 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.tsf.2014.06.058
  • 2014 • 74 Deposition and oxidation of oxide-dispersed CoNiCrAlY bondcoats
    Okada, M. and Vassen, R. and Karger, M. and Sebold, D. and Mack, D. and Jarligo, M.O. and Bozza, F.
    Journal of Thermal Spray Technology 23 147-153 (2014)
    CoNiCrAlY powder and nano-size alumina powder were milled by a high-energy-attrition ball-mill, and an oxide-dispersed powder was produced with a mixed structure of metal and alumina in each particle. The oxide-dispersed bond coat powder was deposited by HVOF. Pores, however, were observed in the coating since the alumina was deposited without sufficient melting. Isothermal oxidation tests were carried out for the bond coat specimens at a temperature of 1373 K up to 1000 h in air. As a result, oxidation proceeded inside the coating, since oxygen penetrated through pores formed in the dispersed alumina. However, the authors find that another deposition using higher power levels led to a bond coat without pores. A commercially available oxide-dispersed CoNiCrAlY powder was also deposited by HVOF and VPS, and isothermal oxidation tests were performed. The analysis clarifies that the HVOF bond coat exhibited the thinnest thermally grown oxide than those of the VPS bond coat and conventional metallic bond coat. Furnace cycling tests were conducted using the specimens with an additional ceramic thermal-barrier coating. The specimen with the bond coat sprayed by VPS using commercial oxide-dispersed powder showed almost same number of cycles to delamination compared with the specimen with the conventional metal bond coat. © 2013 ASM International.
    view abstractdoi: 10.1007/s11666-013-0037-2
  • 2014 • 73 Deposition of superelastic composite NiTi based films
    Tillmann, W. and Momeni, S.
    Vacuum 104 41-46 (2014)
    In recent years, NiTi shape memory alloys (SMA) thin films have been widely used as promising high-performance materials in the field of biomedical and microelectromechanical (MEMS) systems. However, there are still important problems such as their unsatisfactory mechanical and tribological properties including a limited hardness and wear resistance. This study aimed at deposition of layered composite thin films made of NiTi and TiCN thin films on Si (100) substrate by means of DC magnetron sputtering. Subsequently, microstructures, mechanical properties and shape memory behavior of these bilayers were investigated using Nanoindentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The results of this study confirmed that the presence of TiCN layer on NiTi thin film modifies its mechanical properties while maintaining the shape memory effects. The initial findings of this research work are suggestive of the potential for fabrication of self-healed composite NiTi based films. © 2014 Published by Elsevier Ltd.
    view abstractdoi: 10.1016/j.vacuum.2013.12.010
  • 2014 • 72 Effect of preparation of iron-infiltrated activated carbon catalysts on nitrogen oxide conversion at low temperature
    Busch, M. and Schmidt, W. and Migunov, V. and Beckel, A. and Notthoff, C. and Kompch, A. and Bergmann, U. and Winterer, M. and Atakan, B.
    Applied Catalysis B: Environmental 160-161 641-650 (2014)
    Nitrogen oxides are toxic and their concentration in human workspace should be reduced to a minimum level. Among the possible catalyst materials activated carbon based catalysts are a cheap and non-toxic alternative of high availability. In this paper we investigate two different methods for the preparation of iron-infiltrated activated carbon catalysts: chemical vapor infiltration (CVI) and the incipient wetness method (IWM). The effects of the preparation method on the structure and catalytical performance are compared with the effects of infiltration load and co-deposition of silicon dioxide. The study elucidates profound differences in the nitrogen dioxide adsorption and catalytic nitrogen oxide decomposition, depending on the catalyst preparation technique. Samples prepared by chemical vapor infiltration exhibit well dispersed iron/iron oxide particles all over the sample cross section. Crystalline iron oxide is only detected in the samples prepared via the gas phase and not in samples prepared by IWM. The nitrogen dioxide adsorption is notably enhanced in samples with a large accessible micropore volume. All samples containing iron catalyze the conversion of nitrogen oxides into nitrous oxide and carbon monoxide, but especially the co-deposition of silica enhances the nitric oxide conversion into less harmful species. The iron/silica-co-deposited activated carbon catalyst prepared via incipient wetness method exhibits the best catalytical performance of all investigated catalysts at 425. K. © 2014 .
    view abstractdoi: 10.1016/j.apcatb.2014.05.010
  • 2014 • 71 Electrochemically induced deposition of poly(benzoxazine) precursors as immobilization matrix for enzymes
    Andronescu, C. and Pöller, S. and Schuhmann, W.
    Electrochemistry Communications 41 12-15 (2014)
    Water-soluble benzoxazine oligomers were synthesized by reacting bisphenol A, tetraethylenepentamine and formaldehyde. The pre-formed benzoxazine oligomers can be further electropolymerized from aqueous suspensions under formation of poly(benzoxazine)-based films on electrode surfaces. Integration of glucose oxidase in a poly(benzoxazine) film let to highly reproducible and stable biosensors. Poly(benzoxazines) are proposed as a new family of stable polymers for the design of enzyme electrodes. © 2014 Elsevier B.V.
    view abstractdoi: 10.1016/j.elecom.2014.01.015
  • 2014 • 70 Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review,Interactions within natural soils have often been neglectedwhen assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids in soils, and an analysis of the diverse ENM characteristics determining availability from the soil organisms' perspective to assess the main soil characteristics that determine the fate, speciation, and ultimately bioavailability of ENM in natural soils. Predominantly salinity, texture, pH, concentration, and nature of mobile organic compounds and degree of saturation determine ENM bioavailability.
    Cornelis, G. and Hund-Rinke, K. and Kuhlbusch, T. and Van Den Brink, N. and Nickel, C.
    Critical Reviews in Environmental Science and Technology 44 2720-2764 (2014)
    Interactions within natural soils have often been neglectedwhen assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids in soils, and an analysis of the diverse ENM characteristics determining availability from the soil organisms' perspective to assess the main soil characteristics that determine the fate, speciation, and ultimately bioavailability of ENM in natural soils. Predominantly salinity, texture, pH, concentration, and nature of mobile organic compounds and degree of saturation determine ENM bioavailability.
    view abstractdoi: 10.1080/10643389.2013.829767
  • 2014 • 69 Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition
    Yao, X. and Wiedwald, U. and Trautvetter, M. and Ziemann, P.
    Journal of Applied Physics 115 (2014)
    FeAl films around equiatomic composition are grown on a-cut (11 2 0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at TA 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures. © 2014 AIP Publishing LLC.
    view abstractdoi: 10.1063/1.4861377
  • 2014 • 68 High-throughput fabrication of Au-Cu nanoparticle libraries by combinatorial sputtering in ionic liquids
    König, D. and Richter, K. and Siegel, A. and Mudring, A.-V. and Ludwig, Al.
    Advanced Functional Materials 24 2049-2056 (2014)
    Materials libraries of binary alloy nanoparticles (NPs) are synthesized by combinatorial co-sputter deposition of Cu and Au into the ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C 1C4im][Tf2N]), which is contained in a micromachined cavity array substrate. The resulting NPs and NP-suspensions are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), UV-Vis measurements (UV-Vis), and attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy. Whereas the NPs can be directly observed in the IL using TEM, for XRD measurements the NP concentration is too low to lead to satisfactory results. Thus, a new NP isolation process involving capping agents is developed which enables separation of NPs from the IL without changing their size, morphology, composition, and state of aggregation. The results of the NP characterization show that next to the unary Cu and Au NPs, both stoichiometric and non-stoichiometric Cu-Au NPs smaller than 7 nm can be readily obtained. Whereas the size and shape of the alloy NPs change with alloy composition, for a fixed composition the NPs have a small size distribution. The measured lattice constants of all capped NPs show unexpected increased values, which could be related to the NP/surfactant interactions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/adfm.201303140
  • 2014 • 67 Improved thermal cycling durability of thermal barrier coatings manufactured by PS-PVD
    Rezanka, S. and Mauer, G. and Vaßen, R.
    Journal of Thermal Spray Technology 23 182-189 (2014)
    The plasma spray-physical vapor deposition (PS-PVD) process is a promising method to manufacture thermal barrier coatings (TBCs). It fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). The durability of PS-PVD manufactured columnar TBCs is strongly influenced by the compatibility of the metallic bondcoat (BC) and the ceramic TBC. Earlier investigations have shown that a smooth BC surface is beneficial for the durability during thermal cycling. Further improvements of the bonding between BC and TBC could be achieved by optimizing the formation of the thermally grown oxide (TGO) layer. In the present study, the parameters of pre-heating and deposition of the first coating layer were investigated in order to adjust the growth of the TGO. Finally, the durability of the PS-PVD coatings was improved while the main advantage of PS-PVD, i.e., much higher deposition rate in comparison to EB-PVD, could be maintained. For such coatings, improved thermal cycling lifetimes more than two times higher than conventionally sprayed TBCs, were measured in burner rigs at ~1250 C/1050 C surface/substrate exposure temperatures. © 2013 ASM International.
    view abstractdoi: 10.1007/s11666-013-9971-2
  • 2014 • 66 Indium-tris-guanidinates: A promising class of precursors for water assisted atomic layer deposition of In2O3 thin films
    Gebhard, M. and Hellwig, M. and Parala, H. and Xu, K. and Winter, M. and Devi, A.
    Dalton Transactions 43 937-940 (2014)
    Two closely related mononuclear homoleptic indium-tris-guanidinate complexes have been synthesized and characterized as precursors for atomic layer deposition (ALD) of In2O3. In a water assisted ALD process, high quality In2O3 thin films have been fabricated for the first time using the new class of precursors as revealed by the promising ALD growth characteristics and film properties. © The Royal Society of Chemistry 2014.
    view abstractdoi: 10.1039/c3dt52746h
  • 2014 • 65 Magnetic field templated patterning of the soft magnetic alloy CoFe
    Karnbach, F. and Uhlemann, M. and Gebert, A. and Eckert, J. and Tschulik, K.
    Electrochimica Acta 123 477-484 (2014)
    The ongoing miniaturization of multifunctional electronic consumer products demands for cost-efficient production of functional metal and alloy structures. Recently, an electrochemical method of structuring by means of magnetic gradient fields has been introduced for metal deposition. Here, not only the structured deposition of the metals Co and Fe is presented, but it is further demonstrated that this method can be applied to structure alloys. This is shown for the industrially highly relevant magnetic CoFe alloy. Deposits with maximum layer thickness in regions of high magnetic gradients are formed and the chemical composition of the alloy is constant across the structure. Electrochemical quartz crystal microbalance studies revealed that in applied magnetic gradient fields the current efficiency for alloy deposition is significantly increased with respect to that for hydrogen reduction in the additive free sulphate based electrolyte used in this study. © 2014 Elsevier Ltd.
    view abstractdoi: 10.1016/j.electacta.2014.01.055
  • 2014 • 64 Metal matrix composites deposition in twin wire arc spraying utilizing an external powder injection composition
    Tillmann, W. and Abdulgader, M. and Hagen, L. and Nellesen, J.
    Journal of Thermal Spray Technology 23 40-50 (2014)
    The powder injection parameters, the location of the injection port, as well as the metal matrix composites are important features, which determine the deposition efficiency and embedding behavior of hard materials in the surrounding matrix of the twin wire arc-spraying process. This study investigates the applicability of external powder injection and aims to determine whether the powder injection parameters, the location, and the material combination (composition of the matrix as well as hard material) need to be specifically tailored. Therefore, the position of the injection port in relation to the arc zone was altered along the spraying axis and perpendicular to the arc. The axial position of the injection port determines the thermal activation of the injected powder. An injection behind the arc, close to the nozzle outlet, seems to enhance the thermal activation. The optimal injection positions of different hard materials in combination with zinc-, nickel- and iron-based matrices were found to be closer to the arc zone utilizing a high-speed camera system. The powder size, the mass of the particle, the carrier gas flow, and the electric insulation of the hard material affect the perpendicular position of the radial injection port. These findings show that the local powder injection, the wetting behavior of particles in the realm of the molten pool as well as the atomization behavior of the molten pool all affect the embedding behavior of the hard material in the surrounded metallic matrix. Hardness measurement by means of nanoindentation and EDX analysis along transition zones were utilized to estimate the bonding strength. The observation of a diffusion zone indicates a strong metallurgical bonding for boron carbides embedded in steel matrix. © 2013 ASM International.
    view abstractdoi: 10.1007/s11666-013-0044-3
  • 2014 • 63 PECVD of poly-SiGe/Ge layers with increased total gas flow
    Wang, Q. and Göhlich, A. and Ruß, M. and Yang, P. and Vogt, H.
    Microelectronic Engineering 115 26-31 (2014)
    The PECVD of in situ boron doped SiGe and Ge layers with the increased total gas flow was investigated. It was found, that the SiGe layer could be deposited as amorphous or polycrystalline material depending on the quantity of the total gas flow, while other deposition parameters were kept constant. The increased total gas flow favors the crystallization of the deposited SiGe or Ge layers, what is attributed to the reduced gas residence time. The reduced residence time improves the crystallinity of the deposited layers by increasing the Ge content in the layers (in the case of SiGe layers) and probably additionally through the increasing of the XH3 radicals in the plasma. With the deposition method with increased total gas flow, poly-SiGe and poly-Ge layers with very low resistivity (about 1 mΩ-cm) can be deposited at very low substrate temperatures (poly-SiGe: ≤375 C; poly-Ge: ≤340 C). These layers have small tensile stresses. © 2013 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.mee.2013.10.027
  • 2014 • 62 Plasma characteristics and plasma-feedstock interaction under PS-PVD process conditions
    Mauer, G.
    Plasma Chemistry and Plasma Processing 34 1171-1186 (2014)
    Plasma spray-physical vapor deposition (PS-PVD) is a novel coating process based on plasma spraying. In contrast to conventional methods, deposition takes place not only from liquid splats but also from nano-sized clusters and from the vapor phase. This offers new opportunities to obtain advanced microstructures and thus to comply with growing demands on modern functional coatings. In this study, different process conditions were investigated with regard to the application of the PS-PVD process for ceramic thermal barrier coatings. Plasma characteristics were calculated under chemical equilibrium conditions by minimizing the Gibbs energy. The plasma-feedstock interaction was modeled taking into account the particular conditions at very low pressure. Since the plasma is highly rarefied, the small feedstock particles are in the free molecular flow regime. Hence, continuum methods commonly used in fluid mechanics and heat transfer approaches with continuous boundary conditions are not appropriate; alternative methods based on the kinetic theory of gases are required. The experimental results confirm the predictions about the degree of vaporization made by such calculations. In particular, they show that the feedstock treatment mainly takes place within the very first trajectory segment between injector and jet expansion. © 2014 Springer Science+Business Media New York.
    view abstractdoi: 10.1007/s11090-014-9563-z
  • 2014 • 61 Plasma spray physical vapor deposition of La1-x Sr x Co y Fe1-y O3-δ Thin-film oxygen transport membrane on porous metallic supports
    Jarligo, M.O. and Mauer, G. and Bram, M. and Baumann, S. and Vaßen, R.
    Journal of Thermal Spray Technology 23 213-219 (2014)
    Plasma spray physical vapor deposition (PS-PVD) is a very promising route to manufacture ceramic coatings, combining the efficiency of thermal spray processes and characteristic features of thin PVD coatings. Recently, this technique has been investigated to effectively deposit dense thin films of perovskites particularly with the composition of La0.58Sr 0.4Co0.2Fe0.8O3-δ (LSCF) for application in gas separation membranes. Furthermore, asymmetric type of membranes with porous metallic supports has also attracted research attention due to the advantage of good mechanical properties suitable for use at high temperatures and high permeation rates. In this work, both approaches are combined to manufacture oxygen transport membranes made of gastight LSCF thin film by PS-PVD on porous NiCoCrAlY metallic supports. The deposition of homogenous dense thin film is challenged by the tendency of LSCF to decompose during thermal spray processes, irregular surface profile of the porous metallic substrate and crack and pore-formation in typical ceramic thermal spray coatings. Microstructure formation and coating build-up during PS-PVD as well as the annealing behavior at different temperatures of LSCF thin films were investigated. Finally, measurements of leak rates and oxygen permeation rates at elevated temperatures show promising results for the optimized membranes. © 2013 ASM International.
    view abstractdoi: 10.1007/s11666-013-0004-y
  • 2014 • 60 Plasma Spraying of Ceramics with Particular Difficulties in Processing
    Mauer, G. and Schlegel, N. and Guignard, A. and Jarligo, M.O. and Rezanka, S. and Hospach, A. and Vaßen, R.
    Journal of Thermal Spray Technology 24 30-37 (2014)
    Emerging new applications and growing demands of plasma-sprayed coatings initiate the development of new materials. Regarding ceramics, often complex compositions are employed to achieve advanced material properties, e.g., high thermal stability, low thermal conductivity, high electronic and ionic conductivity as well as specific thermo-mechanical properties and microstructures. Such materials however, often involve particular difficulties in processing by plasma spraying. The inhomogeneous dissociation and evaporation behavior of individual constituents can lead to changes of the chemical composition and the formation of secondary phases in the deposited coatings. Hence, undesired effects on the coating characteristics are encountered. In this work, examples of such challenging materials are investigated, namely pyrochlores applied for thermal barrier coatings as well as perovskites for gas separation membranes. In particular, new plasma spray processes like suspension plasma spraying and plasma spray-physical vapor deposition are considered. In some cases, plasma diagnostics are applied to analyze the processing conditions. © 2014, ASM International.
    view abstractdoi: 10.1007/s11666-014-0149-3
  • 2014 • 59 Recent advances using guanidinate ligands for Chemical Vapour Deposition (CVD) and Atomic Layer Deposition (ALD) applications
    Kurek, A. and Gordon, P.G. and Karle, S. and Devi, A. and Barry, S.T.
    Australian Journal of Chemistry 67 989-996 (2014)
    Volatile metal complexes are important for chemical vapour deposition (CVD) and atomic layer deposition (ALD) to deliver metal components to growing thin films. Compounds that are thermally stable enough to volatilize but that can also react with a specific substrate are uncommon and remain unknown for many metal centres. Guanidinate ligands, as discussed in this review, have proven their utility for CVD and ALD precursors for a broad range of metal centres. Guanidinate complexes have been used to deposit metal oxides, metal nitrides and pure metal films by tuning process parameters. Our review highlights use of guanidinate ligands for CVD and ALD of thin films over the past five years, design trends for precursors, promising precursor candidates and discusses the future outlook of these ligands. © CSIRO 2014.
    view abstractdoi: 10.1071/CH14172
  • 2014 • 58 Self-directed localization of ZIF-8 thin film formation by conversion of ZnO nanolayers
    Khaletskaya, K. and Turner, S. and Tu, M. and Wannapaiboon, S. and Schneemann, A. and Meyer, R. and Ludwig, Al. and Van Tendeloo, G. and Fischer, R.A.
    Advanced Functional Materials 24 4804-4811 (2014)
    Control of localized metal-organic framework (MOF) thin film formation is a challenge. Zeolitic imidazolate frameworks (ZIFs) are an important sub-class of MOFs based on transition metals and imidazolate linkers. Continuous coatings of intergrown ZIF crystals require high rates of heterogeneous nucleation. In this work, substrates coated with zinc oxide layers are used, obtained by atomic layer deposition (ALD) or by magnetron sputtering, to provide the Zn 2+ ions required for nucleation and localized growth of ZIF-8 films ([Zn(mim)2]; Hmim = 2-methylimidazolate). The obtained ZIF-8 films reveal the expected microporosity, as deduced from methanol adsorption studies using an environmentally controlled quartz crystal microbalance (QCM) and comparison with bulk ZIF-8 reference data. The concept is transferable to other MOFs, and is applied to the formation of [Al(OH)(1,4-ndc)]n (ndc = naphtalenedicarboxylate) thin films derived from Al2O3 nanolayers. The self-template route for the manufacturing of ZIF-8 films on silicon (Si) and quartz crystal microbalance (QCM) substrates involves the pre-deposition of ZnO films prepared by sputtering or atomic layer deposition methods and the subsequent conversion of the immobilized ZnO phase into crystalline and homogeneously dense ZIF-8 films via microwave-assisted synthesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/adfm.201400559
  • 2014 • 57 Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition
    Sengstock, C. and Lopian, M. and Motemani, Y. and Borgmann, A. and Khare, C. and Buenconsejo, P.J.S. and Schildhauer, T.A. and Ludwig, Al. and Köller, M.
    Nanotechnology 25 (2014)
    The aim of this study was to reproduce the physico-mechanical antibacterial effect of the nanocolumnar cicada wing surface for metallic biomaterials by fabrication of titanium (Ti) nanocolumnar surfaces using glancing angle sputter deposition (GLAD). Nanocolumnar Ti thin films were fabricated by GLAD on silicon substrates. S. aureus as well as E. coli were incubated with nanostructured or reference dense Ti thin film test samples for one or three hours at 37 °C. Bacterial adherence, morphology, and viability were analyzed by fluorescence staining and scanning electron microscopy and compared to human mesenchymal stem cells (hMSCs). Bacterial adherence was not significantly different after short (1 h) incubation on the dense or the nanostructured Ti surface. In contrast to S. aureus the viability of E. coli was significantly decreased after 3 h on the nanostructured film compared to the dense film and was accompanied by an irregular morphology and a cell wall deformation. Cell adherence, spreading and viability of hMSCs were not altered on the nanostructured surface. The results show that the selective antibacterial effect of the cicada wing could be transferred to a nanostructured metallic biomaterial by mimicking the natural nanocolumnar topography. © 2014 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0957-4484/25/19/195101
  • 2014 • 56 Synthesis of WO3 nanoblades by the dealloying of glancing angle deposited W-Fe nanocolumnar thin films
    Khare, C. and Stepanovich, A. and Buenconsejo, P.J.S. and Ludwig, Al.
    Nanotechnology 25 (2014)
    Glancing angle co-deposition of well-separated W-Fe nanocolumns was carried out using a W oblique angle sputter source and a Fe confocal incidence source. As-deposited nanocolumns with an overall composition of W64.6Fe35.4 (at.%) exhibited an average column width w nc of 77 ± 15 nm with predominant growth in the β-W phase. With the aim of synthesizing highly porous nanostructures, the as-deposited precursor W-Fe nanocolumnar thin films were immersed in aqueous HNO3 solution for various dealloying durations (t d ). Formation of nanoflake-, nanocactus-, and nanoblade-like structures were observed during the dealloying treatment, as a result of selective dissolution of Fe from the W-Fe precursor films and simultaneous oxidation of W adatoms. By increasing the dealloying duration, the Fe concentration within the film reduced drastically and the film thickness increased by about three times in comparison to the as-deposited film. The dealloyed film exhibited an overall composition of W95.6Fe4.4, where the effective surface area of the film increased substantially. It was found that W adatom diffusion and subsequent rearrangement are crucially important in determining the resultant thin film morphology. The morphological development, corresponding compositions and crystallographic properties of different nanostructures were found to be significantly dependent on the dealloying duration. For optimized processing parameters, the selective dissolution process led to formation of single crystal monoclinic WO3 nanoblades, with growth along [002] and [020] axes. © 2014 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0957-4484/25/20/205606
  • 2014 • 55 The effect of surface reactions of O, O-3 and N on film properties during the growth of silica-like films
    Rugner, K. and Reuter, R. and von Keudell, A. and Benedikt, J.
    Journal of Physics D-applied Physics 47 224005 (2014)
    The effect of surface reactions of O, O-3 and N radicals during the growth of silica-like (SiOxCyHz) films on film properties is investigated. A SiOxCyHz film is deposited from a He/Hexamethyldisiloxan (HMDSO) cold atmospheric plasma on a rotating substrate. The surface of this film is, during the growth, treated on the opposite site of the substrate by a second cold atmospheric plasma with helium and an addition of O-2 or N-2. A reactor with four separated cells and gas curtains between them is used to avoid cross-contamination of the ambient atmosphere in each cell. The changes in film composition after the deposition with and without a treatment by O, O-3 and N are investigated by Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy. Additionally, the effect of each species on the deposition rate is also presented and discussed.
    view abstractdoi: 10.1088/0022-3727/47/22/224005
  • 2014 • 54 Thermogravimetric analysis of activated carbons, ordered mesoporous carbide-derived carbons, and their deactivation kinetics of catalytic methane decomposition
    Shilapuram, V. and Ozalp, N. and Oschatz, M. and Borchardt, L. and Kaskel, S. and Lachance, R.
    Industrial and Engineering Chemistry Research 53 1741-1753 (2014)
    This study presents the deactivation kinetics of methane decomposition for the activated carbons Fluka-05105 and Fluka-05120, ordered mesoporous carbon (CMK-3), and ordered mesoporous carbide-derived carbon (DUT-19). The experimental and thermodynamically predicted carbon deposition, the average and total hydrogen production, and the effect of flow rate on carbon formation rate of these catalysts were investigated. Results indicate that the experimental conditions chosen were within the reaction control regime. Catalytic activity was calculated via two different definitions present in literature: one in terms of carbon deposition rate and the other in terms of carbon mass deposited. Deactivation kinetics were obtained by fitting the experimental data by nonlinear regression analysis. Differences between the two methods in determining activity resulted in significant changes in the estimation of deactivation kinetics. The activity calculated based on the rate method results in the best fit of experimentally collected data. A deactivation order and methane concentration dependency of approximately 1.0 and 0.5 were determined for all the catalysts tested (Fluka-05105, Fluka-05120, CMK-3, and DUT-19). The activation energy of deactivation (Ed) was determined to be 192, 154, 166, and 181 kJ/mol for Fluka-05120, Fluka-05105, CMK-3, and DUT-19, respectively. DUT-19 was the best performing catalyst in terms of carbon formation rate, total carbon production, hydrogen production rate, average hydrogen production, and total hydrogen production. © 2013 American Chemical Society.
    view abstractdoi: 10.1021/ie402195q
  • 2014 • 53 Thermopower engineering of Bi2Te3 without alloying: The interplay between nanostructuring and defect activation
    Bae, C. and Böhnert, T. and Gooth, J. and Lim, S. and Lee, S. and Kim, H. and Heimann, S. and Schulz, S. and Shin, H. and Nielsch, K.
    Semiconductor Science and Technology 29 (2014)
    We report on the interplay between nanostructuring and defect activation in dense polycrystalline Bi2Te3 thin films in terms of the thermopower engineering. The Bi2Te3 thin films were prepared at relatively low temperatures (100-160 °C) by atomic layer deposition and their grains showed different sizes in the range of 50-200 nm according to the deposition temperatures. We monitored the conductivity, Seebeck coefficient, and power factor of all samples from the temperature of 50-400 K. By increasing the growth temperature, remarkably, we observed the gradual defect activation from the nominal p-type to n-type in our binary end compound, Bi2Te3 without any alloying. The present results give us an insight on the optimization of thermoelectric materials not only by nanostructuring (i.e., phonon engineering) but also by controlled defect activation (i.e., electron engineering). © 2014 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0268-1242/29/6/064003
  • 2014 • 52 Wide-range structural and chemical stability of the magnetic oxide NiFe2O4 Grown by O2-assisted pulsed laser deposition
    Hoppe, M. and Gorgoi, M. and Schneider, C. M. and Muller, M.
    IEEE Transactions on Magnetics 50 (2014)
    We present a study of the structural and chemical properties of the magnetic insulator NiFe2O4 on conductive Nb-doped SrTiO3 (001) substrates. Special regard is given to the dependence of the thin film properties on the O2:Ar ratio during pulsed laser deposition. Using stoichiometric NiFe2O4 target material and varying the O2 partial pressure from 0% to 100%, we find a nonzero oxygen threshold for heteroepitaxial growth and a stoichiometric Fe:Ni cation distribution. Moreover, our study clearly demonstrates that NiFe2O4 thin films grow with high quality over a wide range of oxygen partial pressures. These optimized NiFe2O4/SrTiO3 heterostructures are envisioned as efficient spin filter tunnel contacts for room temperature application. © 1965-2012 IEEE.
    view abstractdoi: 10.1109/TMAG.2014.2322378
  • 2014 • 51 Zr-based conversion layer on Zn-Al-Mg alloy coated steel sheets: Insights into the formation mechanism
    Lostak, T. and Maljusch, A. and Klink, B. and Krebs, S. and Kimpel, M. and Flock, J. and Schulz, S. and Schuhmann, W.
    Electrochimica Acta 137 65-74 (2014)
    Zr-based conversion layers are considered as environmentally friendly alternatives replacing trication phosphatation in the automotive industry. Based on excellent electronic barrier properties they provide an effective corrosion protection of the metallic substrate. In this work, thin protective layers were grown on novel Zn-Al-Mg alloy coated steel sheets by increasing the local pH-value at the sample surface leading to deposition of a Zr-based conversion layer. For this purpose Zn-Al-Mg alloy (ZM) coated steel sheets were treated in an aqueous model conversion solution containing well-defined amounts of hexafluorozirconic acid (H2ZrF6) and characterized after different immersion times with SKPFM and field emission SEM (FE-SEM)/EDX techniques. A deposition mechanism of Zr-based conversion coatings on microstructural heterogeneous Zn-Al-Mg alloy surfaces was proposed. © 2014 Elsevier Ltd.
    view abstractdoi: 10.1016/j.electacta.2014.05.163
  • 2013 • 50 A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures
    Tillmann, W. and Momeni, S. and Hoffmann, F.
    Tribology International 66 324-329 (2013)
    There are several manufacturing processes, in which the employment of solid lubricants is limited. In addition, ecological damage and higher production costs are further consequences of using such solid lubricants. This work aims at using the great potential of thin film technology to deposit adaptive, self-lubricating coatings as an alternative to conventional solid lubricants. Using magnetron sputtering process several titanium aluminum vanadium nitride coatings (TiAlVN) were developed in this study. These quaternary coatings possess the ability of forming lubricious oxides, known as Magnéli phases, at elevated temperatures, which significantly reduces the friction coefficient and surface wear. © 2013 Elsevier Ltd.
    view abstractdoi: 10.1016/j.triboint.2013.06.007
  • 2013 • 49 Atomic layer deposition of Er2O3 thin films from Er tris-guanidinate and water: Process optimization, film analysis and electrical properties
    Xu, K. and Chaudhuri, A.R. and Parala, H. and Schwendt, D. and Arcos, T.D.L. and Osten, H.J. and Devi, A.
    Journal of Materials Chemistry C 1 3939-3946 (2013)
    For the first time, the combination of the homoleptic erbium tris-guanidinate metalorganic complex ([Er(NMe2-Guan)3]) simply with water yielded high quality Er2O3 thin films on Si(100) substrates employing the atomic layer deposition (ALD) process. The process optimization to grow good quality Er2O3 layers was performed by varying the Er precursor pulse time, water pulse time and purge time. The high reactivity of the Er compound towards water and good thermal stability in the temperature range of 150-275°C (ALD window) resulted in homogeneous, stoichiometric Er2O3 layers with high growth rates (1.1 Å per cycle) and the as-deposited films crystallized in the cubic phase. The saturation behavior at different temperatures in the ALD window and the linear dependence of film thickness as a function of precursor pulse time confirmed the true ALD process. The potential of Er2O 3 thin films as gate dielectrics was verified by performing capacitance-voltage (C-V) and current-voltage (I-V) measurements. Dielectric constants estimated from the accumulation capacitance were found to be in the range of 10-13 for layers of different thicknesses (15-30 nm). © 2013 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c3tc30401a
  • 2013 • 48 Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe
    Steves, S. and Styrnoll, T. and Mitschker, F. and Bienholz, S. and Nikita, B. and Awakowicz, P.
    Journal of Physics D: Applied Physics 46 (2013)
    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to n e = (1.25 ± 0.26) x 10^17 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8) x 10^15 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K. © 2013 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0022-3727/46/44/445201
  • 2013 • 47 Continuum and kinetic simulations of the neutral gas flow in an industrial physical vapor deposition reactor
    Bobzin, K. and Brinkmann, R.P. and Mussenbrock, T. and Bagcivan, N. and Brugnara, R.H. and Schäfer, M. and Trieschmann, J.
    Surface and Coatings Technology 237 176-181 (2013)
    Magnetron sputtering used for physical vapor deposition processes often requires gas pressures well below 1. Pa. Under these conditions the gas flow in the reactor is usually determined by a Knudsen number of about one, i.e., a transition regime between the hydrodynamic and the rarefied gas regime. In the first, the gas flow is well described by the Navier-Stokes equations, while in the second a kinetic approach via the Boltzmann equation is necessary. In this paper the neutral gas flow of argon and molecular nitrogen gas inside an industrial scale plasma reactor was simulated using both a fluid model and a fully kinetic Direct Simulation Monte Carlo model.By comparing both model results the validity of the fluid model was checked. Although in both models a Maxwell-Boltzmann energy distribution of the neutral particles is the natural outcome, the results of the gas flow differ significantly. The fluid model description breaks down, due to the inappropriate assumption of a fluid continuum. This is due to exclusion of non-local effects in the multi dimensional velocity space, as well as invalid gas/wall interactions. Only the kinetic model is able to provide an accurate physical description of the gas flow in the transition regime. Our analysis is completed with a brief investigation of different definitions of the local Knudsen number. We conclude that the most decisive parameter - the spatial length scale L - has to be very careful chosen in order to obtain a reasonable estimate of the gas flow regime. © 2013 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2013.08.018
  • 2013 • 46 Electrochemical deposition of Co(Cu)/Cu multilayered nanowires
    Fedorov, F.S. and Mönch, I. and Mickel, C. and Tschulik, K. and Zhao, B. and Uhlemann, M. and Gebert, A. and Eckert, J.
    Journal of the Electrochemical Society 160 D13-D19 (2013)
    Electrochemical deposition in alumina templates is proved as a promising method for production of Co(Cu)/Cu nanowires showing high giant magnetoresistance (GMR). This study discusses the deposition of multilayered structures in highly ordered alumina templates in dependence on diffusion (Cu) or kinetically controlled (Co) behavior. Results show a high impact of spherical diffusion on the enhancement ofcurrent density of the diffusion controlled component compared todepositionof thin films on planar electrodes. To achieve a separation of the layers and to decrease the amount of Cu in the Co layer the deposition potential of Co was shifted toward more negative potentials. Lithographic structuring of the template surface was carried out to allow a 4-point measurement of the resistance. A high GMR of about 12% was obtained for [Co(Cu) (9 nm)/Cu (11 nm)]380 multilayered nanowires with high accuracy and reproducibility. © 2012 The Electrochemical Society.
    view abstractdoi: 10.1149/2.006302jes
  • 2013 • 45 Fe-Mg interdiffusion rates in clinopyroxene: Experimental data and implications for Fe-Mg exchange geothermometers
    Müller, T. and Dohmen, R. and Becker, H.W. and ter Heege, J.H. and Chakraborty, S.
    Contributions to Mineralogy and Petrology 166 1563-1576 (2013)
    Chemical interdiffusion of Fe-Mg along the c-axis [001] in natural diopside crystals (XDi = 0.93) was experimentally studied at ambient pressure, at temperatures ranging from 800 to 1,200 °C and oxygen fugacities from 10-11 to 10-17 bar. Diffusion couples were prepared by ablating an olivine (XFo = 0.3) target to deposit a thin film (20-100 nm) onto a polished surface of a natural, oriented diopside crystal using the pulsed laser deposition technique. After diffusion anneals, compositional depth profiles at the near surface region (~400 nm) were measured using Rutherford backscattering spectroscopy. In the experimental temperature and compositional range, no strong dependence of DFe-Mg on composition of clinopyroxene (Fe/Mg ratio between Di93-Di65) or oxygen fugacity could be detected within the resolution of the study. The lack of fO2-dependence may be related to the relatively high Al content of the crystals used in this study. Diffusion coefficients, DFe-Mg, can be described by a single Arrhenius relation with (Formula presented). DFe-Mg in clinopyroxene appears to be faster than diffusion involving Ca-species (e.g., DCa-Mg) while it is slower than DFe-Mg in other common mafic minerals (spinel, olivine, garnet, and orthopyroxene). As a consequence, diffusion in clinopyroxene may be the rate-limiting process for the freezing of many geothermometers, and compositional zoning in clinopyroxene may preserve records of a higher (compared to that preserved in other coexisting mafic minerals) temperature segment of the thermal history of a rock. In the absence of pervasive recrystallization, clinopyroxene grains will retain compositions from peak temperatures at their cores in most geological and planetary settings where peak temperatures did not exceed ~1,100 °C (e.g., resetting may be expected in slowly cooled mantle rocks, many plutonic mafic rocks, or ultra-high temperature metamorphic rocks). © 2013 Springer-Verlag Berlin Heidelberg.
    view abstractdoi: 10.1007/s00410-013-0941-y
  • 2013 • 44 Growth and crystallization of TiO2 thin films by atomic layer deposition using a novel amido guanidinate titanium source and tetrakis-dimethylamido-titanium
    Reiners, M. and Xu, K. and Aslam, N. and Devi, A. and Waser, R. and Hoffmann-Eifert, S.
    Chemistry of Materials 25 2934-2943 (2013)
    We studied the growth of TiO2 by liquid injection atomic layer deposition (ALD) utilizing two different amide-based titanium sources, tetrakis-dimethylamido-titanium [(NMe2)4-Ti, TDMAT] and its recently developed derivative, tris-(dimethylamido)-mono-(N,N′- diisopropyl-dimethyl-amido-guanidinato)-titanium {[(N-iPr)2NMe 2]Ti(NMe2)3, TiA3G1}, with water vapor as counterreactant. A clear saturation of growth with an increasing precursor supply was found for TDMAT between 150 and 300 C and for TiA3G1 between 150 and 330 C. Representative growth per cycle (GPC) values at 250 C were 0.041 and 0.044 nm/cycle, respectively. Compared to that of TDMAT, ALD of TiA3G1 exhibited a significantly higher stability in the GPC values up to 300 C coinciding with an improved temperature stability of the precursor. Both processes showed a minimum of the growth rate as a function of temperature. In all cases, the residual carbon and nitrogen contents of the TiO2 films were < 3 atom %. Conformal growth was demonstrated on three-dimensional pinhole structures with an aspect ratio of around 1:30. Deposition temperatures of ≤200 C led to quasi-amorphous films. At higher growth temperatures, the anatase phase developed, accompanied by the brookite and/or the rutile phase depending on process conditions, deposition temperature, and film thickness. © 2013 American Chemical Society.
    view abstractdoi: 10.1021/cm303703r
  • 2013 • 43 High temperature wettability of multicomponent CrAlSiN and TiAlSiN coatings by molten glass
    Chang, Y.-Y. and Cheng, C.-M. and Liou, Y.-Y. and Tillmann, W. and Hoffmann, F. and Sprute, T.
    Surface and Coatings Technology 231 24-28 (2013)
    The phenomenon of glass-to-mold sticking is a major problem for industrial glass forming processes. Ternary TiAlN coatings attracted considerable industrial interest because of their excellent tribological performance and high oxidation resistance at high temperatures. Recently, multicomponent CrAlSiN and TiAlSiN coatings have been developed in order to gain high hardness and good thermal stability at temperatures exceeding 800. °C. In this study, CrAlSiN, TiAlSiN and AlTiN coatings were deposited on tungsten carbide substrates by using a cathodic-arc deposition system with lateral rotating arc cathodes. Titanium, chromium and AlSi (12. at.% of Si) cathodes were used for the deposition of CrAlSiN and TiAlSiN coatings. All the deposited CrAlSiN, TiAlSiN and AlTiN coatings showed a B1-NaCl crystal structure. The deposited CrAlSiN and TiAlSiN coatings exhibited nanocrystalline structure and possessed hardness as high as 35-37. GPa after annealing at 700. °C in air. The wettability of the CrAlSiN, TiAlSiN and AlTiN coated tungsten carbides by molten glass at temperatures between 300. °C and 700. °C in controlled air under 1.6. Pa was measured by using an improved sessile drop method. The CrAlSiN showed a low oxidation rate and a non-wetting characteristic superior to TiAlSiN and AlTiN coatings. © 2012 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2012.04.050
  • 2013 • 42 Influence of the spray angle on the properties of HVOF sprayed WC-Co coatings using (-10 + 2 μm) fine powders
    Tillmann, W. and Baumann, I. and Hollingsworth, P. and Laemmerhirt, I.-A.
    Journal of Thermal Spray Technology 22 272-279 (2013)
    The application of fine powders in thermal spray technology represents an innovative approach to apply dense and smooth near-net shape coatings on tools with complex geometry. However, this aim can only be achieved as long as the influence of the handling parameters of the spray process, such as the spray angle, is sufficiently understood. In this study, the influence of the spray angle on the deposition rate as well as on the coating properties (microhardness, roughness, and porosity) of HVOF-sprayed, fine-structured coatings are investigated. A fine, agglomerated, and sintered WC-12Co powder (agglomerate size: 2-10 μm, WC-particle Fisher sub-sieve size = 400 nm) was used as feedstock material. It has been shown that HVOF spraying of fine powders is less susceptible to an alteration of the spray angle than most other thermal spray processes such as plasma- or arc-spraying. The reduction of the spray angle results in a decrease in the deposition rate, while no significant degradation of the coating properties is found up to 30. However, at spray angles below 30 the coating strength is negatively affected by the formation of pores and cracks. © 2013 ASM International.
    view abstractdoi: 10.1007/s11666-013-9882-2
  • 2013 • 41 Insight into the Reaction Scheme of SiO2 Film Deposition at Atmospheric Pressure
    Rugner, K. and Reuter, R. and Ellerweg, D. and de los Arcos, T. and von Keudell, A. and Benedikt, J.
    Plasma Processes and Polymers 10 1061--1073 (2013)
    Characterisation of an atmospheric pressure microplasma jet in combination with simulations have been used to determine reaction mechanism of SiO2-like film formation and reaction rate constants for several gas phase reactions in the He/hexamethyldisiloxane (HMDSO)(/O-2) plasma chemistry. Using a variable-length quartz tube, the gas residence time in the plasma effluent could be well controlled without changing plasma properties. A possible reaction scheme has been developed. Deposition rates, deposited profiles, carbon content of the films and the depletion of HMDSO could be reproduced by the simulation. The simulation indicates that HMDSO in He(/O-2) plasma dissociates preferentially into (CH3)(3)SiO and Si(CH3)(3), where the former radical serves as a main growth precursor.
    view abstractdoi: 10.1002/ppap.201300059
  • 2013 • 40 Morphology control of thin P3HT-Si-NCs composite films for hybrid photovoltaic cells
    Cunha, M. and Bernardo, G. and Hilliou, L. and Wiggers, H. and Pereira, R.N.
    Materials Science Forum 730-732 227-231 (2013)
    This work deals with an experimental investigation of the microstructure/morphology of spin-casted composite thin films of poly(3-hexylthiophene) (P3HT) and silicon nanocrystals (Si- NCs), in the weight proportion 1:1, which develop under different deposition conditions. The experimental parameters considered were the following: i) solvent quality; ii) spinning rate; iii) spinning time and iv) solution concentration. The developed morphologies were characterized by means of optical microscopy and X-ray diffraction (XRD) measurements. The present work aims at a) establishing the relationship between processing conditions and resultant morphology and b) defining the most relevant processing parameters that govern and are of significance for the induced morphology. © (2013) Trans Tech Publications, Switzerland.
    view abstractdoi: 10.4028/www.scientific.net/MSF.730-732.227
  • 2013 • 39 Plasma spraying of efficient photoactive TiO2 coatings
    Mauer, G. and Guignard, A. and Vaßen, R.
    Surface and Coatings Technology 220 40-43 (2013)
    In TiO2 coatings for photocatalytic applications or dye-sensitized solar cells, anatase phase with specific rutile content is often preferred to achieve optimum activity. At appropriate process parameters, such phase composition can be obtained by suspension plasma spraying (SPS). However, immediately after deposition, partial transformation to rutile can take place if the substrate temperature is sufficient. Experimental results show that the phase composition has to be balanced with other coating characteristics like microstructure and deposition rate.Another approach to improve the photoactivity of TiO2 is nitrogen doping. It is known that such anionic dopant can create states within the band gap so as to reduce locally the energy barrier of the photoexited electron. Thus, the photoactivity in the range of visible light can be enhanced. TiN addition was investigated to introduce nitrogen in TiO2 coatings directly during SPS. First results are presented. © 2012 Elsevier B.V.
    view abstractdoi: 10.1016/j.surfcoat.2012.08.042
  • 2013 • 38 Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying
    Mauer, G. and Hospach, A. and Zotov, N. and Vaßen, R.
    Journal of Thermal Spray Technology 22 83-89 (2013)
    Plasma spraying at very low pressure (50-200 Pa) is significantly different from atmospheric plasma conditions (APS). By applying powder feedstock, it is possible to fragment the particles into very small clusters or even to evaporate the material. As a consequence, the deposition mechanisms and the resulting coating microstructures could be quite different compared to conventional APS liquid splat deposition. Thin and dense ceramic coatings as well as columnar-structured strain-tolerant coatings with low thermal conductivity can be achieved offering new possibilities for application in energy systems. To exploit the potential of such a gas phase deposition from plasma spray-based processes, the deposition mechanisms and their dependency on process conditions must be better understood. Thus, plasma conditions were investigated by optical emission spectroscopy. Coating experiments were performed, partially at extreme conditions. Based on the observed microstructures, a phenomenological model is developed to identify basic growth mechanisms. © 2012 ASM International.
    view abstractdoi: 10.1007/s11666-012-9838-y
  • 2013 • 37 Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings
    Styrnoll, T. and Harhausen, J. and Lapke, M. and Storch, R. and Brinkmann, R.P. and Foest, R. and Ohl, A. and Awakowicz, P.
    Plasma Sources Science and Technology 22 (2013)
    The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p 0 ~ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ~ 109 cm-3 and Te,eff ~ 2 eV) to the APS (ne >~ 1012 cm-3 and Te,eff ~ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments. © 2013 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0963-0252/22/4/045008
  • 2013 • 36 Tribological comparison of different surface topographies coated with chromium aluminum nitride
    Tillmann, W. and Herper, J. and Laemmerhirt, I.-A.
    Materialwissenschaft und Werkstofftechnik 44 730-735 (2013)
    The reduction of friction and wear is one important goal for the extension of the tool life in many industrial applications. The forming and cutting industries in particular, are very interested in new techniques and surface coating characteristics that will improve the tribological behavior of the tools. Biomimetics is a very promising approach using biological surfaces or phenomena to optimize the properties of engineering components. The "Lotus Effect" is the most famous example, whereby surfaces are made water- and dirt-repellent. Taking a closer look at nature, it can be noticed that many different natural surfaces have perfectly adapted to their environment in order to meet the respective requirements. Extending the use of natural and biological effects to improve the material performance, it was discovered that the skin of many insects has an excellent frictional behavior and thus the potential to be transferred onto technical surfaces. In this paper, the surface structure of a dung beetle (db) was investigated. The main objective was to combine nature-adapted surface patterns with wear-resistant near-netshape PVD-coatings (PVD=physical vapour deposition), in order to improve the tribological properties of a tool surface. The shell of the beetle served as a pattern for the structure of the surfaces. A substrate, composed of high speed steel material, was structured by means of milling prior to the deposition of a chromium aluminum nitride multilayer coating system, using a magnetron sputtering process. The mechanical and tribological properties of the structured and coated surfaces were compared by means of nanoindentation, ball-on-disc-testing, and scanning electron microscopy. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/mawe.201300183
  • 2013 • 35 Why silver deposition is so fast: Solving the enigma of metal deposition
    Pinto, L.M.C. and Spohr, E. and Quaino, P. and Santos, E. and Schmickler, W.
    Angewandte Chemie - International Edition 52 7883-7885 (2013)
    A perfect match: Silver deposition is one of the fastest electrochemical reactions, even though the Ag+ ion loses more than 5 eV solvation energy in the process. This phenomenon, an example of the enigma of metal deposition, was investigated by a combination of MD simulations, DFT, and specially developed theory. At the surface, the Ag+ ion experiences a strong interaction with the sp band of silver, which catalyzes the reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/anie.201301998
  • 2013 • 34 Zr(NEtMe)2(guan-NEtMe2)2] as a novel atomic layer deposition precursor: ZrO2 film growth and mechanistic studies
    Blanquart, T. and Niinistö, J. and Aslam, N. and Banerjee, M. and Tomczak, Y. and Gavagnin, M. and Longo, V. and Puukilainen, E. and Wanzenboeck, H.D. and Kessels, W.M.M. and Devi, A. and Hoffmann-Eifert, S. and Ritala, M. and Leskelä, M.
    Chemistry of Materials 25 3088-3095 (2013)
    [Zr(NEtMe)2(guan-NEtMe2)2], a recently developed compound, was investigated as a novel precursor for the atomic layer deposition (ALD) of ZrO2. With water as the oxygen source, the growth rate remained constant over a wide temperature range, whereas with ozone the growth rate increased steadily with deposition temperature. Both ALD processes were successfully developed: the characteristic self-limiting ALD growth mode was confirmed at 300 C. The growth rates were exceptionally high, 0.9 and 1.15 Å/cycle with water and ozone, respectively. X-ray diffraction (XRD) indicated that the films were deposited in the high-permittivity cubic phase, even when grown at temperatures as low as 250 C. Compositional analysis performed by means of X-ray photoelectron spectroscopy (XPS) demonstrated low carbon and nitrogen contamination (< 2 at. % when deposited with ozone). The films presented low root-mean-square (rms) roughness, below 5% of the film thickness, as well as excellent step coverage and conformality on 30:1 aspect ratio trench structures. Dielectric characterization was performed on ZrO 2 metal-insulator-metal (MIM) capacitors and demonstrated high permittivity and low leakage current, as well as good stability of the capacitance. The ALD reaction mechanism was studied in situ: adsorption of the precursor through reaction of the two guan-NEtMe2 ligands with the surface-OD groups was confirmed by the quartz crystal microbalance (QCM) and quadrupole mass spectrometric (QMS) results. © 2013 American Chemical Society.
    view abstractdoi: 10.1021/cm401279v
  • 2012 • 33 Atomic layer deposition of HfO 2 thin films employing a heteroleptic hafnium precursor
    Xu, K. and Milanov, A.P. and Parala, H. and Wenger, C. and Baristiran-Kaynak, C. and Lakribssi, K. and Toader, T. and Bock, C. and Rogalla, D. and Becker, H.-W. and Kunze, U. and Devi, A.
    Chemical Vapor Deposition 18 27-35 (2012)
    The application of a heteroleptic hafnium amide-guanidinate precursor for the deposition of HfO 2 thin films via a water-assisted atomic layer deposition (ALD) process is demonstrated for the first time. HfO 2 films are grown in the temperature range 100-300 °C using the compound [Hf(NMe 2) 2(NMe 2-Guan) 2] (1). This compound shows self-limiting ALD-type growth characteristics with growth rates of the order of 1.0-1.2 Å per cycle in the temperature range 100-225 °C. The saturation behavior and a linear dependence on film thickness as a function of number of cycles are verified at various temperatures within the ALD window. The as-deposited HfO 2 films are characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy (RBS), X-ray photoelectron spectroscopy (XPS), and electrical measurements. For a direct comparison of the precursor performance with that of the parent alkyl amide [Hf(NMe 2) 4] (2), ALD experiments are also performed employing compound 2 under similar process conditions, and in this case no typical ALD characteristics are observed. The application of a heteroleptic hafnium amide-guanidinate precursor [Hf(NMe 2) 2(NMe 2-Guan) 2] for the deposition of HfO 2 thin films via a water assisted ALD process has been demonstrated for the first time. This compound showed self-limiting ALD type growth characteristics with the growth rates as high as 1.0-1.2 Å per cycle in the temperature range 100-225 °C. Typical ALD characteristics such as saturation behavior and linear dependence on the film thickness as a function of number of cycles were verified at different temperatures within the ALD window. The as-deposited HfO 2 films were characterized by AFM, SEM, RBS, XPS and electrical measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/cvde.201106934
  • 2012 • 32 Cellular reactions toward nanostructured silicon surfaces created by laser ablation
    Wallat, K. and Dörr, D. and Le Harzic, R. and Stracke, F. and Sauer, D. and Neumeier, M. and Kovtun, A. and Zimmermann, H. and Epple, M.
    Journal of Laser Applications 24 (2012)
    Silicon wafers were structured with a femtosecond laser on the cm 2 scale with high spatial frequency laser-induced periodic surface structures. These areas are characterized by regular parallel ripples with a period of the order of 100 nm. The particular ripple spacing is determined by the illumination wavelength of the tunable femtosecond laser. The cellular reaction to the structured silicon wafers and to the same materials, coated with calcium phosphate nanoparticles by electrophoretic deposition, was studied using L929 fibroblasts, human mesenchymal stem cells, and epithelial cells. The cells adhered uniformly to structured and unprocessed areas after seeding but significantly preferred the unstructured silicon after 48 h. This behavior disappeared after coating the structured surface with calcium phosphate nanoparticles. © 2012 Laser Institute of America.
    view abstractdoi: 10.2351/1.4732594
  • 2012 • 31 Characteristics of ceramic coatings made by thin film low pressure plasma spraying (LPPS-TF)
    Hospach, A. and Mauer, G. and Vaßen, R. and Stöver, D.
    Journal of Thermal Spray Technology 21 435-440 (2012)
    The thin film low pressure plasma spray process (LPPS-TF) has been developed with the aim of efficient depositing uniform and thin coatings with large area coverage by plasma spraying. At high power input (∼150 kW) and very low pressure (∼100 Pa) the plasma jet properties change considerably and it is even possible to evaporate the powder feedstock material providing advanced microstructures of the deposits. This relatively new technique bridges the gap between conventional plasma spraying and physical vapor deposition. In addition, the resulting microstructures are unique and can hardly be obtained by other processes. In this paper, microstructures made by LPPS-TF are shown and the columnar layer growth by vapor deposition is demonstrated. In addition to the ceramic materials TiO 2, Al2 O3 or MgAl2O4, the focus of the research was placed on partially yttria-stabilized zirconia. Variations of the microstructures are shown and discussed concerning potential coating applications. © ASM International.
    view abstractdoi: 10.1007/s11666-012-9748-z
  • 2012 • 30 Electrochemical quartz crystal microbalance study of the Fe-Ga co-deposition
    Iselt, D. and Tschulik, K. and Oswald, S. and Pohl, D. and Schultz, L. and Schlörb, H.
    Journal of the Electrochemical Society 159 H633-637 (2012)
    The electrochemical co-deposition of iron and gallium from a simple aqueous electrolyte was investigated by means of the electrochemical quartz crystal microbalance technique. The results reveal that alloy deposition occurs at potentials more positive than the deposition potential of single gallium. At the same time, large amounts of hydroxides are chemically precipitated due to a pH increase caused by strong hydrogen evolution. If the pH increase is compensated by applying potential pulses, these hydroxides are re-dissolved and metallic alloy films with low oxygen content are directly accessible. XPS and TEM investigations confirm the formation of an Fe100-xGax alloy (x = 20 ± 4 at.%). © 2012 The Electrochemical Society.
    view abstractdoi: 10.1149/2.028207jes
  • 2012 • 29 High mobility ZnO thin film transistors using the novel deposition of high-k dielectrics
    Ngwashi, D.K. and Cross, R.B.M. and Paul, S. and Milanov, A.P. and Devi, A.
    Materials Research Society Symposium Proceedings 1315 71-76 (2012)
    In order to investigate the performance of ZnO-based thin film transistors (ZnO-TFTs), we fabricate devices using amorphous hafnium dioxide (HfO 2) high-k dielectrics. Sputtered ZnO was used as the active channel layer, and aluminium source/drain electrodes were deposited by thermal evaporation, and the HfO 2 high-k dielectrics are deposited by metal-organic chemical vapour deposition (MOCVD). The ZnO-TFTs with high-k HfO 2 gate insulators exhibit good performance metrics and effective channel mobility which is appreciably higher in comparison to SiO 2-based ZnO TFTs fabricated under similar conditions. The average channel mobility, turnon voltage, on-off current ratio and subthreshold swing of the high-k TFTs are 31.2 cm 2V -1s -1, -4.7 V, ∼10 3, and 2.4 V/dec respectively. We compared the characteristics of a typical device consisting of HfO 2 to those of a device consisting of thermally grown SiO 2 to examine their potential for use as high-k dielectrics in future TFT devices. © 2011 Materials Research Society.
    view abstractdoi: 10.1557/opl.2011.721
  • 2012 • 28 Interface of nanoparticle-coated electropolished stents
    Neumeister, A. and Bartke, D. and Bärsch, N. and Weingärtner, T. and Guetaz, L. and Montani, A. and Compagnini, G. and Barcikowski, S.
    Langmuir 28 12060-12066 (2012)
    Nanostructures entail a high potential for improving implant surfaces, for instance, in stent applications. The electrophoretic deposition of laser-generated colloidal nanoparticles is an appropriate tool for creating large-area nanostructures on surfaces. Until now, the bonding and characteristics of the interface between deposited nanoparticles and the substrate surface has not been known. It is investigated using X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy to characterize an electropolished NiTi stent surface coated by laser-generated Au and Ti nanoparticles. The deposition of elemental Au and Ti nanoparticles is observed on the total 3D surface. Ti-coated samples are composed of Ti oxide and Ti carbide because of nanoparticle fabrication and the coating process carried out in 2-propanol. The interface between nanoparticles and the electropolished surface consists of a smooth, monotone elemental depth profile. The interface depth is higher for the Ti nanoparticle coating than for the Au nanoparticle coating. This smooth depth gradient of Ti across the coating-substrate intersection and the thicker interface layer indicate the hard bonding of Ti-based nanoparticles on the surface. Accordingly, electron microscopy reveals nanoparticles adsorbed on the surface without any sorption-blocking intermediate layer. The physicomechanical stability of the bond may benefit from such smooth depth gradients and direct, ligand-free contact. This would potentially increase the coating stability during stent application. © 2012 American Chemical Society.
    view abstractdoi: 10.1021/la300308w
  • 2012 • 27 Quadrupole mass spectrometry of reactive plasmas
    Benedikt, J. and Hecimovic, A. and Ellerweg, D. and von Keudell, A.
    Journal of Physics D-applied Physics 45 403001 (2012)
    Reactive plasmas are highly valued for their ability to produce large amounts of reactive radicals and of energetic ions bombarding surrounding surfaces. The non-equilibrium electron driven plasma chemistry is utilized in many applications such as anisotropic etching or deposition of thin films of high-quality materials with unique properties. However, the non-equilibrium character and the high power densities make plasmas very complex and hard to understand. Mass spectrometry (MS) is a very versatile diagnostic method, which has, therefore, a prominent role in the characterization of reactive plasmas. It can access almost all plasma generated species: stable gas-phase products, reactive radicals, positive and negative ions or even internally excited species such as metastables. It can provide absolute densities of neutral particles or energy distribution functions of energetic ions. In particular, plasmas with a rich chemistry, such as hydrocarbon plasmas, could not be understood without MS. This review focuses on quadrupole MS with an electron impact ionization ion source as the most common MS technique applied in plasma analysis. Necessary information for the understanding of this diagnostic and its application and for the proper design and calibration procedure of an MS diagnostic system for quantitative plasma analysis is provided. Important differences between measurements of neutral particles and energetic ions and between the analysis of low pressure and atmospheric pressure plasmas are described and discussed in detail. Moreover, MS-measured ion energy distribution functions in different discharges are discussed and the ability of MS to analyse these distribution functions with time resolution of several microseconds is presented.
    view abstractdoi: 10.1088/0022-3727/45/40/403001
  • 2012 • 26 Synthesis of an improved hierarchical carbon-fiber composite as a catalyst support for platinum and its application in electrocatalysis
    Kundu, S. and Nagaiah, T.C. and Chen, X. and Xia, W. and Bron, M. and Schuhmann, W. and Muhler, M.
    Carbon 50 4534-4542 (2012)
    A hierarchical carbon-fiber composite was synthesized based on carbon cloth (CC) modified with primary carbon microfibers (CMF) and subsequently secondary carbon nanotubes (CNT), thus forming a three-dimensional hierarchical structure with high BET surface area. The primary CMFs and the secondary CNTs are grown with electrodeposited iron nanoparticles as catalysts from methane and ethylene, respectively. After deposition of Pt nanoparticles by chemical vapor deposition from (trimethyl)cyclopentadienylplatinum, the resulting hierarchical composite was used as catalyst in the electrocatalytic oxygen reduction (oxygen reduction reaction, ORR) as specific test reaction. The modification of the CC with CMFs and CNTs improved the electrochemical properties of the carbon composite as revealed by electrochemical impedance measurements evidencing a low charge transfer resistance for redox mediators at the modified CC. X-ray photoelectron spectroscopy measurements were carried out to identify the chemical state and the surface atomic concentration of the Pt catalysts deposited on the hierarchical carbon composites. The ORR activity of Pt supported on different composites was investigated using rotating disk electrode measurements and scanning electrochemical microscopy. These electrochemical studies revealed that the obtained structured catalyst support is very promising for electrochemical applications, e.g. fuel cells. © 2012 Elsevier Ltd. All rights reserved.
    view abstractdoi: 10.1016/j.carbon.2012.05.037
  • 2011 • 25 Basic investigation of HfO2 based metal-insulator-metal diodes
    Dudek, P. and Schmidt, R. and Lukosius, M. and Lupina, G. and Wenger, C. and Abrutis, A. and Albert, M. and Xu, K. and Devi, A.
    Thin Solid Films 519 5796-5799 (2011)
    Very fast frequency response of metal-insulator-metal (MIM) diodes extends into the terahertz regime making them attractive as key elements as alternative to photovoltaic solar energy harvesting and ultrahigh speed wireless communication systems. The tunnelling phenomena, which is crucial for achieving high performance in these devices is extremely sensitive to the nanoscale structural and chemical quality of interface regions. Modern chemical deposition techniques like Pulsed Injected Metal-Organic Chemical Vapour Deposition (PICVD), Atomic Layer Deposition (ALD) and Atomic Vapour Deposition (AVD®) will be used for the extremely precise growth of thin HfO2 films on TiN bottom electrodes. However, different deposition techniques may give unpredictably different results in terms of film density, surface and interface property and consequently in physical properties of the device. In this work, the influence of deposition techniques on the charge transport characteristics of HfO2 MIM diodes was investigated by Conducting Atomic Force Microscopy (C-AFM) and X-ray Photoelectron Spectroscopy (XPS). © 2010 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.tsf.2010.12.195
  • 2011 • 24 Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF)
    Hospach, A. and Mauer, G. and Vaßen, R. and Stöver, D.
    Journal of Thermal Spray Technology 20 116-120 (2011)
    The very low-pressure plasma Spray (VLPPS) process has been developed with the aim of depositing uniform and thin coatings with coverage of a large area by plasma spraying. At typical pressures of 100-200 Pa, the characteristics of the plasma jet change compared to conventional low-pressure plasma-spraying processes (LPPS) operating at 5-20 kPa. The combination of plasma spraying at low pressures with enhanced electrical input power has led to the development of the LPPS-TF process (TF = thin film). At appropriate parameters, it is possible to evaporate the powder feedstock material providing advanced microstructures of the deposits. This technique offers new possibilities for the manufacturing of thermal barrier coatings (TBCs). Besides the material composition, the microstructure is an important key to reduce thermal conductivity and to increase strain tolerance. In this regard, columnar microstructures deposited from the vapor phase show considerable advantages. Therefore, physical vapor deposition by electron beam evaporation (EB-PVD) is applied to achieve such columnar-structured TBCs. However, the deposition rate is low, and the line-of-sight nature of the process involves specific restrictions. In this article, the deposition of TBCs by the LPPS-TF process is shown. How the evaporation of the feedstock powder could be improved and to what extent the deposition rates could be increased were investigated. © 2010 ASM International.
    view abstractdoi: 10.1007/s11666-010-9549-1
  • 2011 • 23 Comparative study of hydrothermal treatment and thermal annealing effects on the properties of electrodeposited micro-columnar ZnO thin films
    Lupan, O. and Pauporté, T. and Tiginyanu, I.M. and Ursaki, V.V. and Şontea, V. and Ono, L.K. and Cuenya, B.R. and Chow, L.
    Thin Solid Films 519 7738-7749 (2011)
    We report a comparison of the role played by different sample treatments, namely, a low-temperature hydrothermal treatment by hot H2O vapor in an autoclave versus thermal annealing in air on the properties of ZnO films grown by electrochemical deposition (ECD). Scanning electron microscopy studies reveal a homogeneous micro-columnar morphology and changes in the film surface for the two different treatments. It is found that post-growth hydrothermal treatments of ECD ZnO films at 150 °C under an aqueous environment enhance their structural and optical properties (photoluminescence, transmission, Raman spectra, etc.) similar to thermal annealing in air at higher temperatures (&gt; 200 °C). The modifications of the structural and optical properties of ZnO samples after thermal annealing in air in the temperature range of 150-600 °C are discussed. The removal of chlorine from the films by the hydrothermal treatment was evidenced which could be the main reason for the improvement of the film quality. The observation of the enhanced photoluminescence peak at 380 nm demonstrates the superior properties of the hydrothermally treated ZnO films as compared to the films annealed in air ambient at the same or higher temperature. This post-growth hydrothermal treatment would be useful for the realization of high performance optoelectronic devices on flexible supports which might not withstand at high temperature annealing treatments. © 2011 Elsevier B.V. All rights reseved.
    view abstractdoi: 10.1016/j.tsf.2011.05.072
  • 2011 • 22 Electrophoretic deposition of calcium phosphate nanoparticles on a nanostructured silicon surface
    Epple, M. and Neumeier, M. and Dörr, D. and Leharzic, R. and Sauer, D. and Stracke, F. and Zimmermann, H.
    Materialwissenschaft und Werkstofftechnik 42 50-54 (2011)
    Nanostructured silicon surfaces were electrophoretically coated with calcium phosphate nanoparticles. Positively charged calcium phosphate nanoparticles were synthesized by precipitation and then functionalized with poly(ethyleneimine). This permits the electrophoretic deposition on a conductive surface from a dispersion in 2-propanol. The following parameters affected the deposition of the nanoparticles: The deposition potential, the deposition time, and the deposition temperature. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/mawe.201100730
  • 2011 • 21 Evaluation of homoleptic guanidinate and amidinate complexes of gadolinium and dysprosium for MOCVD of rare-earth nitride thin films
    Thiede, T.B. and Krasnopolski, M. and Milanov, A.P. and De Los Arcos, T. and Ney, A. and Becker, H.-W. and Rogalla, D. and Winter, J. and Devi, A. and Fischer, R.A.
    Chemistry of Materials 23 1430-1440 (2011)
    Metal-organic chemical vapor deposition (MOCVD) of thin films of two representative rare-earth nitrides is reported here for the first time. Four homoleptic, all-nitrogen-coordinated, rare-earth (RE) complexes were evaluated as precursors for the respective nitride thin film materials. Two guanidinato complexes [RE{(iPrN)2C(NMe2)}3] [RE = Gd (1), Dy (2)] and two amidinato complexes [RE{(iPrN) 2CMe}3] [RE = Gd (3), Dy (4)] were compared and used either as single source precursors or together with ammonia for MOCVD of gadolinium nitride (GdN) and dysprosium nitride (DyN), respectively. The thermal properties of the precursors were studied and the fragmentation patterns were characterized by high-resolution electron impact-mass spectrometry (HR EI-MS). The obtained nitride films were investigated using a series of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), nuclear reaction analysis (NRA), Rutherford backscattering (RBS), and X-ray photoelectron spectroscopy (XPS). The films contain preferentially oriented grains of fcc-GdN and DyN and are contaminated with small amounts of carbon and oxygen (significantly below 10 at.-% in the best cases). The temperature-dependent magnetic properties of the films, as measured using a superconducting quantum interference device (SQUID), suggest the existence of small ferromagnetic grains of the rare-earth nitrides that exhibit superparamagnetism. Despite the chemical and structural similarity of the guanidinato and amidinato complexes (1-4), a distinctly different behavior as MOCVD precursors was found for 1 and 2, compared with that for 3 and 4. While the guanidinates operate well as single-source precursors (SSPs), the amidinates are not suited at all as SSPs, but give very good nitride films when used in the presence of ammonia. This characteristic behavior was correlated with the different fragmentation mechanisms, as revealed by EI-MS. © 2011 American Chemical Society.
    view abstractdoi: 10.1021/cm102840v
  • 2011 • 20 High performance low temperature solution-processed zinc oxide thin film transistor
    Theissmann, R. and Bubel, S. and Sanlialp, M. and Busch, C. and Schierning, G. and Schmechel, R.
    Thin Solid Films 519 5623-5628 (2011)
    Amorphous zinc oxide thin films have been processed out of an aqueous solution applying a one step synthesis procedure. For this, zinc oxide containing crystalline water (ZnO· × H2O) is dissolved in aqueous ammonia (NH3), making use of the higher solubility of ZnO· × H2O compared with the commonly used zinc oxide. Characteristically, as-produced layers have a thickness of below 10 nm. The films have been probed in standard thin film transistor devices, using silicon dioxide as dielectric layer. Keeping the maximum process temperature at 125 °C, a device mobility of 0.25 cm2V- 1s- 1 at an on/off ratio of 106 was demonstrated. At an annealing temperature of 300 °C, the performance could be optimized up to a mobility of 0.8 cm2V- 1s- 1. © 2011 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.tsf.2011.02.073
  • 2011 • 19 High-throughput characterization of Pt supported on thin film oxide material libraries applied in the oxygen reduction reaction
    Schäfer, D. and Mardare, C. and Savan, A. and Sanchez, M.D. and Mei, B. and Xia, W. and Muhler, M. and Ludwig, Al. and Schuhmann, W.
    Analytical Chemistry 83 1916-1923 (2011)
    Thin film metal oxide material libraries were prepared by sputter deposition of nanoscale Ti/Nb precursor multilayers followed by ex situ oxidation. The metal composition was varied from 6 at.% Nb to 27 at.% Nb. Additionally, thin wedge-type layers of Pt with a nominal thickness gradient from 0 to 5 nm were sputter-deposited on top of the oxides. The materials libraries were characterized with respect to metallic film composition, oxide thickness, phases, electrical conductivity, Pt thickness, and electrochemical activity for the oxygen reduction reaction (ORR). Electrochemical investigations were carried out by cyclic voltammetry using an automated scanning droplet cell. For a nominal Pt thickness >1 nm, no significant dependence of the ORR activity on the Pt thickness or the substrate composition was observed. However, below that critical thickness, a strong decrease of the surface-normalized activity in terms of reduction currents and potentials was observed. For such thin Pt layers, the conductivity of the substrate seems to have a substantial impact on the catalytic activity. Results from X-ray photoelectron spectroscopy (XPS) measurements suggest that the critical Pt thickness coincides with the transition from a continuous Pt film into isolated particles at decreasing nominal Pt thickness. In the case of isolated Pt particles, the activity of Pt decisively depends on its ability to exchange electrons with the oxide layer, and hence, a dependence on the substrate conductivity is rationalized. © 2011 American Chemical Society.
    view abstractdoi: 10.1021/ac102303u
  • 2011 • 18 High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy
    Lai, Y.W. and Hamann, S. and Ehmann, M. and Ludwig, Al.
    Review of Scientific Instruments 82 (2011)
    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoneys equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent. © 2011 American Institute of Physics.
    view abstractdoi: 10.1063/1.3600594
  • 2011 • 17 Liquid-phase epitaxy of multicomponent layer-based porous coordination polymer thin films of [M(L)(P)0.5] type: Importance of deposition sequence on the oriented growth
    Zacher, D. and Yusenko, K. and Bétard, A. and Henke, S. and Molon, M. and Ladnorg, T. and Shekhah, O. and Schüpbach, B. and Dea Losa Arcos, T. and Krasnopolski, M. and Meilikhov, M. and Winter, J. and Terfort, A. and Wöll, C. a...
    Chemistry - A European Journal 17 1448-1455 (2011)
    The progressive liquid-phase layer-by-layer (LbL) growth of anisotropic multicomponent layer-based porous coordination polymers (PCPs) of the general formula [M(L)(P)0.5] (M: Cu2+, Zn2+; L: dicarboxylate linker; P: dinitrogen pillar ligand) was investigated by using either pyridyl- or carboxyl-terminated self-assembled monolayers (SAMs) on gold substrates as templates. It was found that the deposition of smooth, highly crystalline, and oriented multilayer films of these PCPs depends on the conditions at the early growth cycles. In the case of a two-step process with an equimolar mixture of L and P, growth along the [001] direction is strongly preferred. However, employing a three-step scheme with full separation of all components allows deposition along the [100] direction on carboxyl-terminated SAMs. Interestingly, the growth of additional layers on top of previously grown oriented seeding layers proved to be insensitive to the particular growth scheme and full retention of the initial orientation, either along the [001] or [100] direction, was observed. This homo- and heteroepitaxial LbL growth allows full control over the orientation and the layer sequence, including introduction of functionalized linkers and pillars. One layer at a time: The stepwise liquid-phase layer-by-layer growth of anisotropic, multicomponent layer-based porous coordination polymers (PCPs) of the general formula [M(L)(P) 0.5] (M: Cu2+, Zn2+; L: dicarboxylate linker, P: dinitrogen pillar ligand) was investigated by using either pyridyl- or carboxyl-terminated self-assembled monolayers as templates. Highly oriented PCP multilayers were selectively grown along the [100] and [001] directions (see figure). © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/chem.201002381
  • 2011 • 16 Malonate complexes of dysprosium: Synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films
    Milanov, A.P. and Seidel, R.W. and Barreca, D. and Gasparotto, A. and Winter, M. and Feydt, J. and Irsen, S. and Becker, H.-W. and Devi, A.
    Dalton Transactions 40 62-78 (2011)
    A series of malonate complexes of dysprosium were synthesized as potential metalorganic precursors for Dy containing oxide thin films using chemical vapor deposition (CVD) related techniques. The steric bulkiness of the dialkylmalonato ligand employed was systematically varied and its influence on the resulting structural and physico-chemical properties that is relevant for MOCVD was studied. Single crystal X-ray diffraction analysis revealed that the five homoleptic tris-malonato Dy complexes (1-5) are dimers with distorted square-face bicapped trigonal-prismatic geometry and a coordination number of eight. In an attempt to decrease the nuclearity and increase the solubility of the complexes in various solvents, the focus was to react these dimeric complexes with Lewis bases such as 2,2′-biypridyl and pyridine (6-9). This resulted in monomeric tris-malonato mono Lewis base adduct complexes with improved thermal properties. Finally considering the ease of synthesis, the monomeric nature and promising thermal characteristics, the silymalonate adduct complex [Dy(dsml)3bipy] (8) was selected as single source precursor for growing DySixOy thin films by liquid injection metalorganic chemical vapor deposition (LI-MOCVD) process. The as-deposited films were analyzed for their morphology and composition by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, Rutherford backscattering (RBS) analysis and X-ray photoelectron spectroscopy. © 2011 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c0dt00455c
  • 2011 • 15 Nanoscale photoelectron ionisation detector based on lanthanum hexaboride
    Zimmer, C.M. and Schubert, J. and Hamann, S. and Kunze, U. and Doll, T.
    Physica Status Solidi (A) Applications and Materials Science 208 1241-1245 (2011)
    A nanoscale ioniser is presented exceeding the limitation of conventional photoionisation detectors. It employs accelerated photoelectrons that allow obtaining molecule specificity by the tuning of ionisation energies. The material lanthanum hexaboride (LaB 6) is used as air stable photo cathode. Thin films of that material deposited by pulsed laser deposition (PLD) show quantum efficiency (QE) in the range of 10 -5 which is comparable to laser photo stimulation results. A careful treatment of the material yields reasonable low work functions even after surface reoxidation which opens up the possibility of using ultraviolet light emitting diodes (UV LEDs) in replacement of discharge lamps. Schematic diagram of a photoelectron ionisation detector (PeID) operating by an electron emitter based on the photoelectric effect of lanthanum hexaboride. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/pssa.201000966
  • 2011 • 14 p-Co3O4/n-ZnO, Obtained by PECVD, Analyzed by X-ray Photoelectron Spectroscopy
    Bekermann, D. and Gasparotto, A. and Barreca, D. and Devi, A. and Fischer, R.A.
    Surface Science Spectra 18 36-45 (2011)
    The present work focuses on the X-ray Photoelectron Spectroscopy (XPS) and X-ray Excited Auger Electron Spectroscopy (XE-AES) of a Co3O4/ZnO nanosystem. The composite material was obtained via a two-step Plasma Enhanced-Chemical Vapor Deposition (PECVD) process in Ar/O2 mixtures, consisting in the initial deposition of ZnO and the subsequent growth of Co3O4 onto the pristine matrices. Zn(ketoimi)2 (ketoimi = [CH3O(CH2)3NC(CH3)=C(H)C(CH3)=O]) and Co(dpm)2 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) were used as zinc and cobalt precursors, respectively. In particular, strongly 〈001〉 oriented ZnO was grown at 300 °C, followed by the deposition of Co3O4 at 200 °C, applying a radio-frequency (RF) power of 20 W. Structural, morphological and compositional investigations were performed by Glancing Incidence X-ray Diffraction (GIXRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Surface XPS and XE-AES analyses were carried out to study in detail the system O 1s, Zn 2p3/2, Zn 3p and Co 2p core levels, as well as the Zn and Co Auger peaks. The obtained results evidenced the formation of a composite material, in which ZnO and Co3O4 preserved their chemical identity. © 2011 American Vacuum Society.
    view abstractdoi: 10.1116/11.20111003
  • 2011 • 13 Small-scale deposition of thin films and nanoparticles by microevaporation sources
    Meyer, R. and Hamann, S. and Ehmann, M. and König, D. and Thienhaus, S. and Savan, A. and Ludwig, Al.
    Journal of Microelectromechanical Systems 20 21-27 (2011)
    This paper reports on a novel miniaturized deposition technique based on micro-hotplates which are used as microevaporation sources (MES) for a localized deposition of thin films and nanoparticles. The feasibility of this small-scale deposition technique and its general properties are shown for depositions of Ag on unpatterned and microstructured substrates. The deposited films are rotationally symmetric and show a distinct lateral thickness change. We take advantage of this latter effect, as, e.g., all stages of film condensation can be observed within one experiment on one sample, in a size suitable for transmission electron microscopy investigations. For realizing the most laterally confined depositions, a micro-Knudsen cell was used. It is shown that the use of MES is also very suitable for the fabrication and deposition of nanoparticles. © 2011 IEEE.
    view abstractdoi: 10.1109/JMEMS.2010.2090506
  • 2011 • 12 Stepwise deposition of metal organic frameworks on flexible synthetic polymer surfaces
    Meilikhov, M. and Yusenko, K. and Schollmeyer, E. and Mayer, C. and Buschmann, H.-J. and Fischer, R.A.
    Dalton Transactions 40 4838-4841 (2011)
    Thin films of [Cu3(btc)2]n (btc = 1,3,5-benzenetricarboxylate) metal organic framework were deposited in a stepwise manner on surfaces of flexible organic polymers. The thickness of films can be precisely controlled. The deposition of the first cycles was monitored by UV-vis spectroscopy. The porosity was proven by the adsorption of pyrazine, which was monitored by FT-IR and thermogravimetric analysis. The deposition of MOF thin films on flexible polymer surfaces might be a new path for the fabrication of functional materials for different applications, such as protection layers for working clothes and gas separation materials in the textile industry. © 2011 The Royal Society of Chemistry.
    view abstractdoi: 10.1039/c0dt01820a
  • 2011 • 11 Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes
    Jakobi, J. and Menéndez-Manjón, A. and Chakravadhanula, V.S.K. and Kienle, L. and Wagener, P. and Barcikowski, S.
    Nanotechnology 22 (2011)
    Charged Pt-Ir alloy nanoparticles are generated through femtosecond laser ablation of a Pt9Ir target in acetone without using chemical precursors or stabilizing agents. Preservation of the target's stoichiometry in the colloidal nanoparticles is confirmed by transmission electron microscopy (TEM)-energy-dispersive x-ray spectroscopy (EDX), high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM)-EDX elemental maps, high resolution TEM and selected area electron diffraction (SAED) measurements. Results are discussed with reference to thermophysical properties and the phase diagram. The nanoparticles show a lognormal size distribution with a mean Feret particle size of 26nm. The zeta potential of - 45mV indicates high stability of the colloid with a hydrodynamic diameter of 63nm. The charge of the particles enables electrophoretic deposition of nanoparticles, creating nanoscale roughness on three-dimensional PtIr neural electrodes within a minute. In contrast to coating with Pt or Ir oxides, this method allows modification of the surface roughness without changing the chemical composition of PtIr. © 2011 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0957-4484/22/14/145601
  • 2011 • 10 Surface chemistry of metal-organic frameworks at the liquid-solid interface
    Zacher, D. and Schmid, R. and Wöll, C. and Fischer, R.A.
    Angewandte Chemie - International Edition 50 176-199 (2011)
    MOFs on surfaces: Many parameters need to be considered in the formation of metal-organic frameworks (MOFs; see structures) at the liquid-solid interface. The methods and growth mechanisms for the layer-by-layer deposition of MOFs on functional materials, the homo- and heteroepitaxial deposition of MOF heterocrystals, and the coordination modulation of MOF surfaces are reviewed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/anie.201002451
  • 2011 • 9 Thermally driven solid-phase epitaxy of laser-ablated amorphous AlFe films on (0001)-oriented sapphire single crystals
    Trautvetter, M. and Wiedwald, U. and Paul, H. and Minkow, A. and Ziemann, P.
    Applied Physics A: Materials Science and Processing 102 725-730 (2011)
    Solid-phase epitaxy is demonstrated for the metallic binary alloy AlFe. Stoichiometric thin films are deposited at ambient temperature onto c-cut sapphire by pulsed laser deposition (PLD), resulting in smooth amorphous films as revealed by X-ray diffraction (XRD) and atomic force microscopy (AFM). By annealing at 600°C, still smooth epitaxial AlFe films are obtained exhibiting the B2 phase with the (110) direction parallel to the substrate normal and an in-plane orientation as given by AlFe[001]||Al2O 3[112̄0]. While ferromagnetism is observed for the amorphous phase, the formation of the B2 structure is accompanied by paramagnetic behavior, confirming the high structural quality. © Springer-Verlag 2010.
    view abstractdoi: 10.1007/s00339-010-5972-x
  • 2010 • 8 A review of crystallographic textures in chemical vapor-deposited diamond films
    Liu, T. and Raabe, D. and Mao, W.-M.
    Signal, Image and Video Processing 4 1-16 (2010)
    Diamond is one of the most important functional materials for film applications due to its extreme physical and mechanical properties, many of which depend on the crystallographic texture. The influence of various deposition parameters matters to the texture formation and evolution during chemical vapor deposition (CVD) of diamond films. In this overview, the texture evolutions are presented in terms of both simulations and experimental observations. The crystallographic textures in diamond are simulated based on the van der Drift growth selection mechanism. The film morphology and textures associated with the growth parameters α (proportional to the ratio of the growth rate along the 〈100〉 direction to that along the 〈111〉 direction) are presented and determined by applying the fastest growth directions. Thick films with variations in substrate temperature, methane concentration, film thickness, and nitrogen addition were analyzed using high-resolution electron back-scattering diffraction (HR-EBSD) as well as X-ray diffraction (XRD), and the fraction variations of fiber textures with these deposition parameters were explained. In conjunction with the focused ion beam (FIB) technique for specimen preparation, the grain orientations in the beginning nucleation zones were studied using HR-EBSD (50 nm step size) in another two sets of thin films deposited with variations in methane concentration and substrate material. The microstructures, textures, and grain boundary character were characterized. Based on the combination of an FIB unit for serial sectioning and HR-EBSD, diamond growth dynamics was observed using a 3D EBSD technique, with which individual diamond grains were investigated in 3D. Microscopic defects were observed in the vicinity of the high-angle grain boundaries by using the transmission electron microscopy (TEM) technique, and the advances of TEM orientation microscopy make it possible to identify the grain orientations in nano-crystalline diamond. © 2010 Higher Education Press and Springer Berlin Heidelberg.
    view abstractdoi: 10.1007/s11760-008-0099-7
  • 2010 • 7 Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium
    Lupan, O. and Pauporté, T. and Chow, L. and Viana, B. and Pellé, F. and Ono, L.K. and Roldan Cuenya, B. and Heinrich, H.
    Applied Surface Science 256 1895-1907 (2010)
    The development of cost-effective and low-temperature synthesis techniques for the growth of high-quality zinc oxide thin films is paramount for fabrication of ZnO-based optoelectronic devices, especially ultraviolet (UV)-light-emitting diodes, lasers and detectors. We demonstrate that the properties, especially UV emission, observed at room temperature, of electrodeposited ZnO thin films from chloride medium (at 70 °C) on fluor-doped tin oxide (FTO) substrates is strongly influenced by the post-growth thermal annealing treatments. X-ray diffraction (XRD) measurements show that the films have preferably grown along (0 0 2) direction. Thermal annealing in the temperature range of 150-400 °C in air has been carried out for these ZnO thin films. The as-grown films contain chlorine which is partially removed after annealing at 400 °C. Morphological changes upon annealing are discussed in the light of compositional changes observed in the ZnO crystals that constitute the film. The optical quality of ZnO thin films was improved after post-deposition thermal treatment at 150 °C and 400 °C in our experiments due to the reducing of defects levels and of chlorine content. The transmission and absorption spectra become steeper and the optical bandgap red shifted to the single-crystal value. These findings demonstrate that electrodeposition have potential for the growth of high-quality ZnO thin films with reduced defects for device applications. © 2009 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.apsusc.2009.10.032
  • 2010 • 6 Epitaxially stabilized TiN/(Ti,Fe,Co)N multilayer thin films in (pseudo-)fcc crystal structure by sequential magnetron sputter deposition
    Klever, C. and Seemann, K. and Stüber, M. and Ulrich, S. and Brunken, H. and Ludwig, Al. and Leiste, H.
    Journal of Physics D: Applied Physics 43 (2010)
    Multilayer thin films were grown by non-reactive sequential magnetron sputter deposition from ceramic TiN and metallic FeCo targets addressing a combination of wear resistance and sensoric functionality. Coatings with bilayer period values ranging from 449 nm down to 2.6 nm were grown with the total amount of either material maintained constant. The multilayer thin films were post-annealed ex situ at 600 °C for 60 min in vacuum. X-ray diffraction results imply the multilayer thin films undergo significant changes in their crystalline structure when the bilayer period is decreased. Using high-resolution transmission electron microscopy as well as selected-area electron diffraction it is shown that in the case of multilayer thin films with bilayer periods of several tens of nanometres and higher, FeCo layers and TiN layers in their respective common CsCl-and NaCl-type crystal structures alternate. In contrast, in the multilayer thin films with bilayer periods of only a few nanometres, grain growth across the interfaces between the individual layers takes place and a strongly textured microstructure is formed which features columns in (pseudo-)fcc crystal structure grown in heteroepitaxial growth mode. It is suggested that the experimental findings imply the latter multilayer thin films to be alternately composed of TiN layers and (Ti,Fe,Co)N solid solution layers which have been formed by a solid-state reaction during the deposition process. As a consequence, heteroepitaxially stabilized columnar grains in strongly textured (pseudo-)fcc crystal structure are formed. This crystal structure is preserved after the annealing procedure which qualifies these coatings for use in applications where temperatures of up to 600 °C are reached. © 2010 IOP Publishing Ltd.
    view abstractdoi: 10.1088/0022-3727/43/39/395406
  • 2010 • 5 Fundamental aspects of substrate biasing: ion velocity distributions and nonlinear effects
    Baloniak, T. and Reuter, R. and von Keudell, A.
    Journal of Physics D-applied Physics 43 335201 (2010)
    Ion bombardment of the substrate is a significant parameter in plasma processing such as dry etching or thin film deposition. The ion bombardment is described by ion velocity distribution functions (IVDFs), which were here measured quantitatively at a sinusoidally and non-sinusoidally biased electrode. The electrode voltage was monitored and controlled in the frequency domain using fast Fourier transformation. IVDF measurements were performed by a floating retarding field analyzer. A full modulation of the IVDF by arbitrary bias waveforms is only achieved if sufficiently high sheath voltages are used. If the applied sheath voltages become too low, the IVDFs are only partly determined by the RF bias waveforms and the system response becomes nonlinear. An analytical sheath model is derived from the experimental data, which accounts for arbitrary bias waveforms as well as for collisional and nonlinear effects in the sheath. It is shown that a combined DC and RF biasing of the electrode is required to gain full control over the ion bombardment of the substrate.
    view abstractdoi: 10.1088/0022-3727/43/33/335201
  • 2010 • 4 Growth of crystalline Gd2O3 thin films with a high-quality interface on Si(100) by low-temperature H2O-assisted atomic layer deposition
    Milanov, A.P. and Xu, K. and Laha, A. and Bugiel, E. and Ranjith, R. and Schwendt, D. and Osten, H.J. and Parala, H. and Fischer, R.A. and Devi, A.
    Journal of the American Chemical Society 132 36-37 (2010)
    (Figure Presented) This work documents the first example of deposition of high-quality Gd2O3 thin films in a surface-controlled, self-limiting manner by a water-based atomic layer deposition (ALD) process using the engineered homoleptic gadolinium guanidinate precursor [Gd(DPDMG) 3]. The potential of this class of compound is demonstrated in terms of a true ALD process, exhibiting pronounced growth rates, a high-quality interface between the film and the substrate without the need for any additional surface treatment prior to the film deposition, and most importantly, encouraging electrical properties. © 2010 American Chemical Society.
    view abstractdoi: 10.1021/ja909102j
  • 2010 • 3 Microstructure and magnetic properties of FeCo/Ti thin film multilayers annealed in nitrogen
    Brunken, H. and Somsen, C. and Savan, A. and Ludwig, Al.
    Thin Solid Films 519 770-774 (2010)
    Multifunctional nanocomposites consisting of at least one ferromagnetic phase (e.g. FeCo) and one protective, wear resistant phase (e.g. TiN) are of interest for applications as sensors or actuators in harsh environments. This paper reports on the fabrication and characterization of nanocomposite thin films, prepared from FeCo/Ti metallic precursor multilayer composition spreads using a combinatorial sputter-deposition system. After deposition, the composition spread was annealed in nitrogen (5 × 10 5 Pa pressure) at 850 °C for 1.5 h, leading to preferential nitriding of Ti to TiN, thus forming the protective phase. Automated energy dispersive X-ray analysis, Auger electron spectroscopy, X-ray diffraction measurements, transmission electron microscopy (TEM) and vibrating sample magnetometry were used for the characterization of the as deposited and nitrided composition spreads. As an unexpected result, the appearance of a Heusler phase (Co 2FeSi) in the nanocomposite was observed by TEM. After N 2 annealing, the nanocomposites show reduced saturation magnetization values μ 0M S between 0.5 and 0.95 T and improved coercive field values μ 0H c between 4 and 13.8 mT, dependent on the TiN content. © 2010 Elsevier B.V. All rights reserved.
    view abstractdoi: 10.1016/j.tsf.2010.09.008
  • 2010 • 2 On the action of magnetic gradient forces in micro-structured copper deposition
    Mutschke, G. and Tschulik, K. and Weier, T. and Uhlemann, M. and Bund, A. and Fröhlich, J.
    Electrochimica Acta 55 9060-9066 (2010)
    In order to shed more light on the role of magnetic gradient forces and Lorentz forces on the deposition pattern found recently at copper electrodes, experiments and numerical simulations have been performed in a simple geometry that consists of a single small cylindrical permanent magnet which is placed behind the cathode. The cylinder axis coincides with the magnetization direction and points normal to the electrode surface. The electrode is oriented vertically which allows a separate discussion of the influence of both forces. Experiments and numerical simulations are found to give very good qualitative agreement with respect to the deposition pattern. Our analysis clearly shows that the major influence is due to the action of the magnetic gradient force. Numerical simulations prove that the separate action of the Lorentz force does not reproduce the deposition structure. A detailed analytical discussion of the motion forced by the different magnetic forces in superposition with natural convection is given. © 2010 Elsevier Ltd All rights reserved.
    view abstractdoi: 10.1016/j.electacta.2010.08.046
  • 2010 • 1 Optical characterisation of BiFeO3 epitaxial thin films grown by pulsed-laser deposition
    Himcinschi, C. and Vrejoiu, I. and Friedrich, M. and Ding, L. and Cobet, C. and Esser, N. and Alexe, M. and Zahn, D.R.T.
    Physica Status Solidi (C) Current Topics in Solid State Physics 7 296-299 (2010)
    Epitaxial thin films of bismuth ferrite, BiFeO3, were deposited by pulsed laser deposition (PLD) on SrTiO3 (100), Nbdoped SrTiO 3 (100) and DyScO3 (110) substrates. Ellipsometric spectra are obtained in the energy range 0.73-9.5 eV by combining Variable Angle Spectroscopic Ellipsometry (VASE) and vacuum ultraviolet (VUV) ellipsometry with synchrotron radiation. The optical constants of BiFeO3 films were determined by analysing the ellipsometric spectra with a model that describes the optical response of a system consisting of air, film and substrate. The shift towards higher energies of the refractive index and extinction coefficient of the film deposited onto Nb-doped SrTiO3 as compared with that deposited onto DyScO3 was attributed to a more compressive in-plane epitaxial strain. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstractdoi: 10.1002/pssc.200982414