Dr.-Ing. Pascal Thome

Materials Science and Engineering
Ruhr-Universiät Bochum

Contact
Author IDs

Hub
  • Local Maxima in Martensite Start Temperatures in the Transition Region between Lath and Plate Martensite in Fe-Ni Alloys
    Thome, P. and Schneider, M. and Yardley, V.A. and Payton, E.J. and Eggeler, G.
    Materials 16 (2023)
    view abstract10.3390/ma16041549
  • Super-Solidus Hot Isostatic Pressing Heat Treatments for Advanced Single Crystal Ni-Base Superalloys
    Lopez-Galilea, I. and Hecker, L. and Epishin, A. and Bürger, D. and Ruttert, B. and Thome, P. and Weber, S. and Theisen, W.
    Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 54 (2023)
    view abstract10.1007/s11661-022-06884-y
  • Crystallographic Analysis of Plate and Lath Martensite in Fe-Ni Alloys
    Thome, P. and Schneider, M. and Yardley, V.A. and Payton, E.J. and Eggeler, G.
    Crystals 12 (2022)
    In the present work, we use an advanced EBSD method to analyze the two prominent types of martensite microstructures that are found in the binary Fe-Ni system, lath martensite (27.5 at.% Ni) and plate martensite (29.5 at.% Ni). We modify, document, and apply an analytical EBSD procedure, which was originally proposed by Yardley and Payton, 2014. It analyzes the distributions of the three KSI-angles (ξ1, ξ2, and ξ3, KSI after Kurdjumov and Sachs), which describe small angular deviations between crystal planes in the unit cells of martensite and austenite—which are related through specific orientation relationships. The analysis of the angular distributions can be exploited to obtain high-resolution, color-coded micrographs of martensitic microstructures, which, for example, visualize the difference between lath and plate martensite and appreciate the microstructural features, like midribs in large plate martensite crystals. The differences between the two types of martensite also manifest themselves in different distributions of the KSI-angles (wider for lath and narrower for plate martensite). Finally, our experimental results prove that local distortions result in scatter, which is larger than the differences between the orientation relationships of Kurdjumov/Sachs, Nishiyama/Wassermann, and Greninger/Troiano. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
    view abstract10.3390/cryst12020156
  • A 3d analysis of dendritic solidification and mosaicity in ni-based single crystal superalloys
    Scholz, F. and Cevik, M. and Hallensleben, P. and Thome, P. and Eggeler, G. and Frenzel, J.
    Materials 14 (2021)
    Ni-based single crystal superalloys contain microstructural regions that are separated by low-angle grain boundaries. This gives rise to the phenomenon of mosaicity. In the literature, this type of defect has been associated with the deformation of dendrites during Bridgman solidification. The present study introduces a novel serial sectioning method that allows to rationalize mosaicity on the basis of spatial dendrite growth. Optical wide-field micrographs were taken from a series of cross sections and evaluated using quantitative image analysis. This allowed to explore the growth directions of close to 2500 dendrites in a large specimen volume of approximately 450 mm3. The application of tomography in combination with the rotation vector base-line electron back-scatter diffraction method allowed to analyze how small angular differences evolve in the early stages of solidification. It was found that the microstructure consists of dendrites with individual growth directions that deviate up to ≈4° from the average growth direction of all dendrites. Generally, individual dendrite growth directions coincide with crystallographic <001> directions. The quantitative evaluation of the rich data sets obtained with the present method aims at contributing to a better understanding of elementary processes that govern competitive dendrite growth and crystal mosa-icity. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
    view abstract10.3390/ma14174904
  • On the Influence of Alloy Composition on Creep Behavior of Ni-Based Single-Crystal Superalloys (SXs)
    Horst, O.M. and Ibrahimkhel, S. and Streitberger, J. and Wochmjakow, N. and Git, P. and Scholz, F. and Thome, P. and Singer, R.F. and Körner, C. and Frenzel, J. and  Eggeler, G.
    Minerals, Metals and Materials Series (2020)
    In the present work, three Ni-based single-crystal superalloys (SXs) were investigated, a Re-containing alloy ERBO/1 (CMSX-4 type) and two Re-free SXs referred to as ERBO/15 and ERBO/15-W, which differ in W content. The microstructural evolution of the three alloys during heat treatment and their creep behavior is investigated. When one applies one heat treatment to all three alloys, one obtains different γ/γ′-microstructures. Subjecting these three alloys to creep in the high-temperature low-stress creep regime, ERBO/15 outperforms ERBO/1. In order to separate the effects of alloy chemistry and microstructure, the kinetics of the microstructural evolution of the three alloys was measured. The results were used to establish similar microstructures in all three alloys. Comparing ERBO/15 with ERBO/15-W, it was found that in ERBO/15-W particles grow faster during the first precipitation heat treatment and that ERBO/15-W creeps significantly faster. At constant microstructures, ERBO/15 and ERBO/1 show similar creep behavior. In the high-temperature and low-stress creep regime, ERBO/15 shows lower minimum creep rates but ERBO/1 features a slower increase of creep rate in the tertiary creep regime. It was also found that in the high-temperature low-stress creep regime, ERBO/1 shows a double minimum creep behavior when particles are small. © 2020, The Minerals, Metals & Materials Society.
    view abstract10.1007/978-3-030-51834-9_6
  • On the influence of crystallography on creep of circular notched single crystal superalloy specimens
    Cao, L. and Thome, P. and Agudo Jácome, L. and Somsen, C. and Cailletaud, G. and Eggeler, G.
    Materials Science and Engineering A 782 (2020)
    The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. © 2020 The Authors
    view abstract10.1016/j.msea.2020.139255
  • On the rhenium segregation at the low angle grain boundary in a single crystal Ni-base superalloy
    He, J. and Scholz, F. and Horst, O.M. and Thome, P. and Frenzel, J. and Eggeler, G. and Gault, B.
    Scripta Materialia 185 (2020)
    Industrial scale single crystal (SX) Ni-base superalloys contain numerous low angle grain boundaries inherited from the solidification process. Here, we demonstrate that low angle grain boundaries in a fully heat-treated SX model Ni-base superalloy are strongly segregated with up to 12 at% Re. Some Re-rich dislocations forming this grain boundary are found located inside γ, others close to a γ/γ′ interface. Although these segregated Re atoms lose their solid-solution strengthening effect, they may enhance the creep resistance by pinning the low angle grain boundaries and slowing down dislocation reactions. © 2020 Acta Materialia Inc.
    view abstract10.1016/j.scriptamat.2020.03.063
  • Ni-base superalloy single crystal (SX) mosaicity characterized by the Rotation Vector Base Line Electron Back Scatter Diffraction (RVB-EBSD) method
    Thome, P. and Medghalchi, S. and Frenzel, J. and Schreuer, J. and Eggeler, G.
    Ultramicroscopy 206 (2019)
    In the present work we present the Rotation Vector Base Line Electron Back Scatter Diffraction (RVB-EBSD) method, a new correlative orientation imaging method for scanning electron microscopy (OIM/SEM). The RVB-EBSD method was developed to study crystal mosaicity in as-cast Ni-base superalloy single crystals (SX). The technique allows to quantify small crystallographic deviation angles between individual dendrites and to interpret associated accommodation processes in terms of geometrically necessary dislocations (GNDs). The RVB-EBSD method was inspired by previous seminal approaches which use cross correlation EBSD procedures. It applies Gaussian band pass filtering to improve the quality of more than 500 000 experimental patterns. A rotation vector approximation and a correction procedure, which relies on a base line function, are used. The method moreover features a novel way of intuitive color coding which allows to easily appreciate essential features of crystal mosaicity. The present work describes the key elements of the method and shows examples which demonstrate its potential. © 2019 Elsevier B.V.
    view abstract10.1016/j.ultramic.2019.112817
  • On crystal mosaicity in single crystal Ni-based superalloys
    Hallensleben, P. and Scholz, F. and Thome, P. and Schaar, H. and Steinbach, I. and Eggeler, G. and Frenzel, J.
    Crystals 9 (2019)
    In the present work, we investigate the evolution of mosaicity during seeded Bridgman processing of technical Ni-based single crystal superalloys (SXs). For this purpose, we combine solidification experiments performed at different withdrawal rates between 45 and 720 mm/h with advanced optical microscopy and quantitative image analysis. The results obtained in the present work suggest that crystal mosaicity represents an inherent feature of SXs, which is related to elementary stochastic processes which govern dendritic solidification. In SXs, mosaicity is related to two factors: inherited mosaicity of the seed crystal and dendrite deformation. Individual SXs have unique mosaicity fingerprints. Most crystals differ in this respect, even when they were produced using identical processing conditions. Small differences in the orientation spread of the seed crystals and small stochastic orientation deviations continuously accumulate during dendritic solidification. Direct evidence for dendrite bending in a seeded Bridgman growth process is provided. It was observed that continuous or sudden bending affects the growth directions of dendrites. We provide evidence which shows that some dendrites continuously bend by 1.7° over a solidification distance of 25 mm. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
    view abstract10.3390/cryst9030149
  • On the evolution of cast microstructures during processing of single crystal Ni-base superalloys using a Bridgman seed technique
    Hallensleben, P. and Schaar, H. and Thome, P. and Jöns, N. and Jafarizadeh, A. and Steinbach, I. and Eggeler, G. and Frenzel, J.
    Materials and Design 128 (2017)
    The present work takes a new look at a modified Bridgman process (Bridgman seed technique, BST) for the production of laboratory Ni-base single crystal (SX) superalloy cylinders of 12/120 mm diameter/length. This type of specimen is needed to perform inexpensive parametric studies for the development of new SX and for understanding the evolution of microstructures during SX casting. During melting, the seed partially melts back. The elementary segregation processes cause a so far unknown type of constitutional heating/cooling. Competitive growth eventually establishes a constant average dendrite spacing. In the present work it is documented how this dendrite spacing varies in one cylindrical ingot, and how it scatters when a series of SX ingots is produced. This type of information is scarce. The calculated temperature gradient across the solid/liquid interface (calculated by FEM) is in excellent agreement with predictions from the Kurz-Fisher equation which yields a dendrite spacing based on the experimental withdrawal rate and the microstructurally determined average dendrite spacing. The presence of small angle grain boundaries on cross sections which were taken perpendicular to the solidification direction can be rationalized on the basis of small deviations from the ideal growth directions of individual primary dendrites. © 2017 Elsevier Ltd
    view abstract10.1016/j.matdes.2017.05.001
  • creep

  • damage

  • grain boundaries

  • materials informatics

  • microstructure

  • scanning electron microscopy

« back