Dr.-Ing. Janine Pfetzing-Micklich

Institute for Materials
Ruhr-Universität Bochum

Author IDs

  • Exploring MgO/HA ceramic nano-composites for biodegradable implants: Exploring biological properties and micromechanics
    Khalili, V. and Sengstock, C. and Kalchev, Y. and Pfetzing-Micklich, J. and Frenzel, J.
    Surface and Coatings Technology 445 (2022)
    view abstract10.1016/j.surfcoat.2022.128730
  • Effect of aspect ratio on the deformation behavior of dislocation-free Ni3 Al nanocubes
    Li, P. and Wang, X. and Zhou, Y. and Pfetzing-Micklich, J. and Somsen, C. and Eggeler, G.
    Nanomaterials 10 (2020)
    This study concentrates on several factors which govern the nanoscale plasticity of in situ compressed dislocation-free Ni3 Al nanocubes: cube size, aspect ratio and the presence of grooves. The yield strength of dislocation-free Ni3 Al nanocubes exhibits an apparent size dependence. The size dependence is strong when cubes are smaller than 300 nm. Compared with the strength of bulk Ni3 Al single crystals, the strength of nanocubes is two orders of magnitude higher, which clearly demonstrates that there is a size effect. Nanocube plasticity strongly depends on the alignment and the shape of the cubes. Deformed aligned nanocubes either display only a few localized deformation events (slip lines) or were homogenously compressed into flats due to multiple slip dislocation-mediated plasticity. For an aligned cube, crack initiation at the intersection of a slip line with a groove in the cube surface was observed. In case of a double cube, crack initiation occurs at surface irregularities, while subsequent crack propagation occurs along one or more slip planes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
    view abstract10.3390/nano10112230
  • Experimental and Theoretical Investigation on Phase Formation and Mechanical Properties in Cr-Co-Ni Alloys Processed Using a Novel Thin-Film Quenching Technique
    Naujoks, D. and Schneider, M. and Salomon, S. and Pfetzing-Micklich, J. and Subramanyam, A.P.A. and Hammerschmidt, T. and Drautz, R. and Frenzel, J. and Kostka, A. and Eggeler, G. and Laplanche, G. and Ludwig, Al.
    ACS Combinatorial Science 22 (2020)
    The Cr-Co-Ni system was studied by combining experimental and computational methods to investigate phase stability and mechanical properties. Thin-film materials libraries were prepared and quenched from high temperatures up to 700 °C using a novel quenching technique. It could be shown that a wide A1 solid solution region exists in the Cr-Co-Ni system. To validate the results obtained using thin-film materials libraries, bulk samples of selected compositions were prepared by arc melting, and the experimental data were additionally compared to results from DFT calculations. The computational results are in good agreement with the measured lattice parameters and elastic moduli. The lattice parameters increase with the addition of Co and Cr, with a more pronounced effect for the latter. The addition of ∼20 atom % Cr results in a similar hardening effect to that of the addition of ∼40 atom % Co. Copyright © 2020 American Chemical Society.
    view abstract10.1021/acscombsci.9b00170
  • Structure zone investigation of multiple principle element alloy thin films as optimization for nanoindentation measurements
    Savan, A. and Allermann, T. and Wang, X. and Grochla, D. and Banko, L. and Kalchev, Y. and Kostka, A. and Pfetzing-Micklich, J. and Ludwig, Al.
    Materials 13 (2020)
    Multiple principal element alloys, also often referred to as compositionally complex alloys or high entropy alloys, present extreme challenges to characterize. They show a vast, multidimensional composition space that merits detailed investigation and optimization to identify compositions and to map the composition ranges where useful properties are maintained. Combinatorial thin film material libraries are a cost-effective and efficient way to create directly comparable, controlled composition variations. Characterizing them comes with its own challenges, including the need for high-speed, automated measurements of dozens to hundreds or more compositions to be screened. By selecting an appropriate thin film morphology through predictable control of critical deposition parameters, representative measured values can be obtained with less scatter, i.e., requiring fewer measurement repetitions for each particular composition. In the present study, equiatomic CoCrFeNi was grown by magnetron sputtering in different locations in the structure zone diagram applied to multinary element alloys, followed by microstructural and morphological characterizations. Increasing the energy input to the deposition process by increased temperature and adding high-power impulse magnetron sputtering (HiPIMS) plasma generators led to denser, more homogeneous morphologies with smoother surfaces until recrystallization and grain boundary grooving began. Growth at 300 ffiC, even without the extra particle energy input of HiPIMS generators, led to consistently repeatable nanoindentation load-displacement curves and the resulting hardness and Young's modulus values. © 2020 by the authors.
    view abstract10.3390/ma13092113
  • Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon
    Liu, X.W. and Laplanche, G. and Kostka, A. and Fries, S.G. and Pfetzing-Micklich, J. and Liu, G. and George, E.P.
    Journal of Alloys and Compounds 775 (2019)
    Thermomechanical processing has been used to control the grain size/shape of the equiatomic CrCoNi medium-entropy alloy (MEA) and obtain excellent strength and ductility. However, in the cast state, the alloy has coarse columnar grains with average widths and lengths of approximately 120 and 1000 μm, respectively, resulting in inferior mechanical properties. To overcome this deficiency, here we microalloyed with Ti and C and successfully changed the grain shape (from columnar to equiaxed) and refined the grain size. The degree to which the microstructure changes depends on the amount of Ti and C added, with the best results obtained at 0.4 at.% each. In the optimal alloy [(CrCoNi)99.2Ti0.4C0.4], the as-cast grains were nearly equiaxed with a uniform size of ∼75 μm. Associated with this change in grain shape/size was a significant improvement of yield strength, ultimate tensile strength and elongation to fracture at both 293 and 77 K. The columnar to equiaxed transition is attributed to the strong mutual affinity of C and Ti, which leads to their build-up ahead of the solid-liquid interface and, in turn, to enhanced constitutional undercooling. © 2018 Elsevier B.V.
    view abstract10.1016/j.jallcom.2018.10.187
  • Data regarding the influence of Al, Ti, and C additions to as-cast Al0.6CoCrFeNi compositionally complex alloys on microstructures and mechanical properties
    Asabre, A. and Pfetzing-Micklich, J. and Stryzhyboroda, O. and Kostka, A. and Hecht, U. and Laplanche, G.
    Data in Brief 27 (2019)
    This brief paper contains raw data of X-ray diffraction (XRD) measurements, microstructural characterization, chemical compositions, and mechanical properties describing the influence of Al, Ti, and C on as-cast Al0.6CoCrFeNi compositionally complex alloys (CCAs). The presented data are related to the research article in reference [1] and therefore this article can be referred to as for the interpretation of the data. X-ray diffraction data presented in this paper are measurements of 2θ versus intensities for each studied alloy. A Table lists the obtained lattice parameters of each identified phase determined by Rietveld analysis. Microstructural-characterization data reported here include backscattered electron (BSE) micrographs taken at different magnifications in a scanning electron microscope (SEM) of Widmanstätten and dendritic microstructures and microstructural parameters such as phase volume fractions, thickness of face-centered cubic (FCC) plates, and prior grain sizes. The compositions of the identified individual phases determined by energy-dispersive X-ray spectroscopy (EDX) in the transmission electron microscope (TEM) are listed as well. Finally, mechanical data including engineering stress-strain curves obtained at different temperatures (room temperature, 400 °C, and 700 °C) for all CCAs are reported. © 2019 The Authors
    view abstract10.1016/j.dib.2019.104742
  • Effect of Al, Ti and C additions on Widmanstätten microstructures and mechanical properties of cast Al0.6CoCrFeNi compositionally complex alloys
    Asabre, A. and Kostka, A. and Stryzhyboroda, O. and Pfetzing-Micklich, J. and Hecht, U. and Laplanche, G.
    Materials and Design 184 (2019)
    The cast microstructure of the Al0.6CoCrFeNi compositionally complex alloy was successfully refined with small additions of Al, Ti and C and its mechanical properties were optimized. In the as-cast state, this alloy has a Widmanstätten microstructure with coarse grains (∼110 μm) of a strong BCC/B2 matrix and soft FCC plates (∼65 vol.%) with large widths (∼1.3 μm). The addition of 0.25 at.% C to Al0.6CoCrFeNi stabilizes the FCC phase and favors the formation of a coarse dendritic microstructure making this alloy unsuitable for structural applications. In contrast, alloying of either 3 at.% Al, Ti, or 3% Ti and 0.25% C to Al0.6CoCrFeNi refined its Widmanstätten microstructure, i.e. the thickness of the FCC plates and/or the size of the prior BCC/B2 grains were significantly reduced. As a result of these microstructural changes, Al and Ti containing alloys show an outstanding strength (twice higher than that of Al0.6CoCrFeNi) and ductilities ≤5% at 20 °C. These properties are retained at 400 °C but at 700 °C, the strength and ductility of almost all alloys decrease. However, Ti containing alloys exhibit much larger ductilities (∼50%) at 700 °C due to their high density of grain boundaries which accommodate plastic deformation through grain boundary sliding. © 2019 The Authors
    view abstract10.1016/j.matdes.2019.108201
  • Effects of the Ion to Growth Flux Ratio on the Constitution and Mechanical Properties of Cr1- x-Alx-N Thin Films
    Banko, L. and Ries, S. and Grochla, D. and Arghavani, M. and Salomon, S. and Pfetzing-Micklich, J. and Kostka, A. and Rogalla, D. and Schulze, J. and Awakowicz, P. and Ludwig, Al.
    ACS Combinatorial Science 21 (2019)
    Cr-Al-N thin film materials libraries were synthesized by combinatorial reactive high power impulse magnetron sputtering (HiPIMS). Different HiPIMS repetition frequencies and peak power densities were applied altering the ion to growth flux ratio. Moreover, time-resolved ion energy distribution functions were measured with a retarding field energy analyzer (RFEA). The plasma properties were measured during the growth of films with different compositions within the materials library and correlated to the resulting film properties such as phase, grain size, texture, indentation modulus, indentation hardness, and residual stress. The influence of the ion to growth flux ratio on the film properties was most significant for films with high Al-content (xAl = 50 at. %). X-ray diffraction with a 2D detector revealed hcp-AlN precipitation starting from Al-concentration xAl ≥ 50 at. %. This precipitation might be related to the kinetically enhanced adatom mobility for a high ratio of ions per deposited atoms, leading to strong intermixing of the deposited species. A structure zone transition, induced by composition and flux ratio JI/JG, from zone T to zone Ic structure was observed which hints toward the conclusion that the combination of increasing flux ratio and Al-concentration lead to opposing trends regarding the increase in homologous temperature. © 2019 American Chemical Society.
    view abstract10.1021/acscombsci.9b00123
  • Development of Single-Crystal Ni-Base Superalloys Based on Multi-criteria Numerical Optimization and Efficient Use of Refractory Elements
    Markl, M. and Müller, A. and Ritter, N. and Hofmeister, M. and Naujoks, D. and Schaar, H. and Abrahams, K. and Frenzel, J. and Subramanyam, A.P.A. and Ludwig, Al. and Pfetzing-Micklich, J. and Hammerschmidt, T. and Drautz, R. and Steinbach, I. and Rettig, R. and Singer, R.F. and Körner, C.
    Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 49 (2018)
    The development of new Ni-base superalloys with a complex composition consisting of eight or more alloying elements is a challenging task. The experimental state-of-the-art development cycle is based on the adaption of already existing compositions. Although new alloy compositions with potentially improved material properties are expected to be similar to already known superalloys, this procedure impedes efficiently finding these compositions in the large multi-dimensional design-space of all alloying elements. Modern alloy development combines numerical optimization methods with experimental validation to guide the development towards promising compositions. In this work, an improved numerical multi-criteria optimization tool using CALPHAD calculations and semi-empirical models for alloy development is presented. The model improvements to its predecessor are described and the successful application for the development of rhenium-free single-crystal Ni-base superalloys ERBO/13 and ERBO/15 is revisited. The optimization tool is described and the designed alloys are discussed regarding phase stability. Finally, a possible phase stability model extending the optimization tool and improving the alloy composition predictions is presented. © 2018, The Author(s).
    view abstract10.1007/s11661-018-4759-0
  • On the influence of crystallography and dendritic microstructure on micro shear behavior of single crystal Ni-based superalloys
    Laplanche, G. and Wieczorek, N. and Fox, F. and Berglund, S. and Pfetzing-Micklich, J. and Kishida, K. and Inui, H. and Eggeler, G.
    Acta Materialia 160 (2018)
    An in-situ SEM micromechanical test technique is used to investigate the response of a Ni-based single crystal superalloy to double shear loading. The present work shows that micro double shear testing can detect mechanical differences between interdendritic and dendritic regions with γ′-volume fractions of 77% and 72%, respectively, i.e., the interdendritic regions exhibit a larger flow stress than the dendritic regions. These micromechanical differences are apparent when micro double shear specimens are oriented for single-slip while they appear to be overshadowed by dislocation interactions, when multiple-slip is promoted. Sudden deformation events are observed to occur concomitantly with the formation of shear steps (localized plastic deformation) at the surface of the shear zones during single-slip. The micro double shear specimens oriented for single-slip show very low work-hardening. In contrast, much higher stresses are required to plastically deform micro double shear specimens oriented for multiple-slip which exhibit stronger work-hardening. No sudden deformation events could be detected for multiple-slip which results in a more homogeneous deformation of the shear zones (absence of localized plastic deformation). © 2018 Acta Materialia Inc.
    view abstract10.1016/j.actamat.2018.08.052
  • Si micro-cantilever sensor chips for space-resolved stress measurements in physical and plasma-enhanced chemical vapour deposition
    Grochla, D. and Banko, L. and Pfetzing-Micklich, J. and Behm, H. and Dahlmann, R. and Ludwig, Al.
    Sensors and Actuators, A: Physical 270 (2018)
    The control of extrinsic and intrinsic mechanical stresses in thin films is crucial. Stresses can limit the film performance e.g. by stress-induced delamination or undesired bending of film/substrate combinations; however, stresses can also be used to obtain functionality. Thus, understanding of stress-inducing mechanisms, correlations of stress with film synthesis parameters and controlling the sign and amplitude of stresses in thin films is important and a facile and reliable stress measurement method is necessary. Here, a stress measurement chip is presented which is based on the measurement of the residual overall film stress by a film-substrate combination curvature-based measurement technique. The novel Si-based cantilever sensor chip can measure residual stress in films from a few nanometers thickness up to several microns. Moreover, the sensor chips are applicable for determining the coefficient of thermal expansion, and for examining the film thickness homogeneity over large areas in a deposition system. They can be applied in physical vapor deposition and plasma-enhanced chemical vapor deposition processes with different geometrical and process-related boundary conditions. Exemplary results which were obtained with the sensor chips are discussed to demonstrate their easy applicability, accuracy, versatility, reliability, the thickness dependence of the residual stress and the homogeneity of SiOx films as well as the residual stress and the thermal expansion values of Al-Cr-N films. © 2017 Elsevier B.V.
    view abstract10.1016/j.sna.2017.12.050
  • Identification of a ternary μ-phase in the Co-Ti-W system – An advanced correlative thin-film and bulk combinatorial materials investigation
    Naujoks, D. and Eggeler, Y.M. and Hallensleben, P. and Frenzel, J. and Fries, S.G. and Palumbo, M. and Koßmann, J. and Hammerschmidt, T. and Pfetzing-Micklich, J. and Eggeler, G. and Spiecker, E. and Drautz, R. and Ludwig, Al.
    Acta Materialia 138 (2017)
    The formation of a ternary μ-phase is documented for the system Co-Ti-W. The relevant compositional stability range is identified by high-throughput energy dispersive X-ray spectroscopy, electrical resistance and X-ray diffraction maps from a thin-film materials library (1 μm thickness). Bulk samples of the identified compositions were fabricated to allow for correlative film and bulk studies. Using analytical scanning and transmission electron microscopy, we demonstrate that in both, thin film and bulk samples, the D85 phase (μ-phase) coexists with the C36-phase and the A2-phase at comparable average chemical compositions. Young's moduli and hardness values of the μ-phase and the C36-phase were determined by nanoindentation. The trends of experimentally obtained elastic moduli are consistent with density functional theory (DFT) calculations. DFT analysis also supports the experimental findings, that the μ-phase can solve up to 18 at.% Ti. Based on the experimental and DFT results it is shown that CALPHAD modeling can be modified to account for the new findings. © 2017 Acta Materialia Inc.
    view abstract10.1016/j.actamat.2017.07.037
  • Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments
    Wieczorek, N. and Laplanche, G. and Heyer, J.-K. and Parsa, A.B. and Pfetzing-Micklich, J. and Eggeler, G.
    Acta Materialia 113 (2016)
    The effect of a pre-strain on the plasticity of copper single crystals subjected to in situ microshear deformation in a scanning electron microscope (SEM) is investigated. Pre-strains of 6.5 and 20% are imposed using [1 0 0] tensile testing. During tensile pre-deformation, several slip systems are activated and irregularly spaced slip bands form. A trace analysis revealed the presence of several slip bands on the tensile specimen near the grips while one family of slip bands parallel to the (1 1 1) crystallographic plane were detected in the middle of the tensile specimen. From the middle of the pre-deformed tensile specimens double microshear samples were prepared using focused ion beam (FIB) machining such that the [0 -1 -1] (1 -1 1) slip system could be directly activated. The results show how microshear behavior reacts to different levels of tensile pre-deformation. Sudden deformation events (SDEs) are observed during microshear testing. The critical stress associated with the first SDE is shown to increase with increasing pre-deformation as a result of an increasing number of slip bands introduced during pre-deformation per shear zone. The results allow also to obtain information on the interaction between dislocations activated during microshearing ([0 -1 -1] (1 -1 1)) and those which were introduced during tensile pre-deformation ([1 0 -1] (1 1 1) and [1 -1 0] (1 1 1)). When these slip systems interact glissile junctions and Lomer-Cottrell locks are likely to form. In the light of this analysis, we rationalize the occurrence of sudden deformation events based on piled up dislocation assemblies which overcome Lomer-Cottrell lock barriers. © 2016 Acta Materialia Inc.
    view abstract10.1016/j.actamat.2016.04.055
  • Direct microstructural evidence for the stress induced formation of martensite during nanonindentation of NiTi
    Pfetzing-Micklich, J. and Wieczorek, N. and Simon, T. and Maaß, B. and Eggeler, G.
    Materials Science and Engineering A 591 (2014)
    When a pseudoelastic NiTi alloy is loaded and subsequently unloaded, stress induced martensite forms and disappears. It is challenging to directly observe and characterize the local martensitic features in such alloys. In the present study we use a specific NiTi alloy where stress induced martensite is thermally stable during unloading to prove the formation of martensite during nanoindentation. TEM investigations provide direct microstructural evidence for the martensitic phase transformation during nanoindentation. Subsequent in-situ heating in TEM shows how the stress induced martensite transforms back to austenite. © 2013 Elsevier B.V.
    view abstract10.1016/j.msea.2013.10.035
  • Investigation of Optical, Electrical, and Mechanical Properties of MOCVD-grown ZrO2 Films
    Dang, V.-S. and Banerjee, M. and Zhu, H. and Srinivasan, N.B. and Parala, H. and Pfetzing-Micklich, J. and Wieck, A.D. and Devi, A.
    Chemical Vapor Deposition 20 (2014)
    Metal-organic (MO)CVD of ZrO2 thin films is performed using the precursor [Zr(NMe2)2(guan)2] (guan=η2-(iPrN)2CNMe2) as the Zr source, together with oxygen. Film deposition is carried out on both Si(100) and glass substrates at various deposition temperatures. The resulting films are characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) for investigating the crystallinity and morphology, respectively. Optical properties are measured by ellipsometry and UV-vis on Si substrates and glass substrates, respectively, showing a high average refractive index of 2.14 and transmittance of more than 80% in visible light for the film deposited at 500°C. The potential of ZrO2 thin films as gate dielectrics is verified by carrying out capacitance-voltage (C-V) and current-voltage (I-V) measurements. Dielectric constants are estimated from the accumulation capacitance, and found to be in the range 12 - 19 at an AC frequency of 1MHz, and a leakage current of the order of 10-6 A cm-2 at the applied field of 1 to 2 MV cm-1 is measured for the films deposited at temperatures from 500 to 700°C. The low leakage current and high dielectric constant implies the good quality of the film, relevant for high-k applications. The hardness of the film ranges from 4.2 to 6.3GPa for the 400nm thick film, as determined by nano-indentation measurements. The optimum dielectric and hardness is found for the film deposited at 600°C, while the highest refractive index is found to be 2.14 for the film deposited at 500°C, due to higher density of the layers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstract10.1002/cvde.201407124
  • Investigation of ternary subsystems of superalloys by thin-film combinatorial synthesis and high-throughput analysis
    König, D. and Pfetzing-Micklich, J. and Frenzel, J. and Ludwig, Al.
    MATEC Web of Conferences 14 (2014)
    A Co-Ti-W thin film materials library was fabricated by magnetron sputtering. By using automated high-throughput measurement techniques (resistance mapping, automated XRD measurements) and cluster analysis a yet unknown phase region was revealed. The existence region of the new ternary phase is close to the composition Co60Ti15W25. In order to transfer the results from thin film to bulk material, a bulk sample was prepared by arc melting and subsequent heat treatment. Scanning electron microscopy and chemical micro-analysis data support that a yet unknown ternary phase exists in the system Co-Ti-W. © 2014 Owned by the authors, published by EDP Sciences.
    view abstract10.1051/matecconf/20141418002
  • Investigation of the thin-film phase diagram of the Cr-Ni-Re system by high-throughput experimentation
    Janghorban, A. and Pfetzing-Micklich, J. and Frenzel, J. and Ludwig, Al.
    Advanced Engineering Materials 16 (2014)
    The Cr-Ni-Re system was investigated over the whole composition range using combinatorial fabrication methods combined with high-throughput characterization techniques in order to establish its thin film phase diagram. After annealing at 940 and 1100°C, the phase equilibrium was reached in the Ni-rich part of the ternary in agreement with the published bulk phase diagram. Annealing the materials library at 940°C is not sufficient to achieve the equilibrium state in the Re-rich part of the system, however by annealing the materials library at 1100°C the formation of expected phases (three solid-solutions and a topologically close packed compound) could be observed. As a result of this study, a thin film phase diagram of the complete Cr-Ni-Re at 1100°C was established, which is well comparable to the bulk phase diagram. This shows that the combinatorial thin film phase diagram approach is feasible and especially promising for materials systems with expensive and/or high melting point constituents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstract10.1002/adem.201300430
  • Mechanical properties of SiLix thin films at different stages of electrochemical Li insertion
    Zinn, A.-H. and Borhani-Haghighi, S. and Ventosa, E. and Pfetzing-Micklich, J. and Wieczorek, N. and Schuhmann, W. and Ludwig, Al.
    Physica Status Solidi (A) Applications and Materials Science 211 (2014)
    The mechanical properties of amorphous Si thin films, lithiated electrochemically to different Si£Li compositions are studied by ex situ nanoindentation. The compositions of the films are adjusted using an electrochemical routine that corrects for the Li consumed by SEI layer growth during initial lithiation. The mechanical properties such as Young's modulus and hardness are derived from nanoindentation. For compositions between Si and SiLi<inf>2.5</inf> the Young's modulus decreases with increasing Li content from ∼160 GPa to ∼8 GPa and the hardness decreases from ∼14 GPa to ∼0.1 GPa. The yield strength values, as deduced from hardness measurements, decrease from ∼5 GPa to 0.05 GPa. AFM imaging is used on the electrochemically cycled films to assess the SEIs impact on the nanomechanical measurements. XPS depth-profiling of the electrochemically cycled sample indicated a Li concentration gradient across the film thickness. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstract10.1002/pssa.201431303
  • Microshear deformation of gold single crystals
    Heyer, J.-K. and Brinckmann, S. and Pfetzing-Micklich, J. and Eggeler, G.
    Acta Materialia 62 (2014)
    We perform microshear experiments on Au single crystals, directly imposing shear loading on the microscopic crystallographic h1-10i {111} slip system. We use a focused ion beam machined micro-double shear specimen which we load with a flat punch indenter inside a scanning electron microscope. Our method yields reproducible mechanical data (e.g. critical shear stresses of 63.5 ± 2.5 MPa). We study small-scale plasticity up to high strains (>50%) at constant slip geometry and document localized plastic deformation and sudden plastic deformation events. Strain bursts are observed, which can be related to the formation of new shear bands. Alternatively, they can result from sudden shear strain accumulation events in existing shear bands. Due to the stochastic nature of plastic deformation, the nature and the number of strain bursts can vary. We show and discuss how our in situ test technique captures these effects and how this affects the corresponding load-displacement curves. We discuss the advantages and inconveniences of our microshear test technique compared to other small-scale testing methods and relate our mechanical results to previous results reported for the micromechanical behavior of Au. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.actamat.2013.10.002
  • Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys
    Laplanche, G. and Pfetzing-Micklich, J. and Eggeler, G.
    Acta Materialia 68 (2014)
    In the present work we used nanoindentation with a spherical indenter tip to study the formation of stress-induced martensite in NiTi shape memory alloys. Prior to nanoindentation, orientation imaging was performed to select austenite grains with specific crystallographic orientations, including the principal crystallographic directions [0 0 1], [1 0 1] and [1 1 1]. We studied a material where stress-induced martensite is stable at room temperature and found surface patterns with four-, two- and threefold symmetries for the [0 0 1], [1 0 1] and [1 1 1] crystallographic indentation directions, respectively. Atomic force microscopy investigations of the topography showed that the surface patterns were associated with sink-ins. The crystallographic sink-in patterns disappeared during heating, which proved their martensitic origin. Our results provide clear experimental evidence which shows that the crystallographic anisotropy of nanoindentation is governed by the crystallographic anisotropy of the stress-induced formation of martensite.©2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.actamat.2014.01.006
  • Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: A case study for the system ni-al
    Thienhaus, S. and Naujoks, D. and Pfetzing-Micklich, J. and König, D. and Ludwig, Al.
    ACS Combinatorial Science 16 (2014)
    The efficient identification of compositional areas of interest in thin film materials systems fabricated by combinatorial deposition methods is essential in combinatorial materials science. We use a combination of compositional screening by EDX together with high-throughput measurements of electrical and optical properties of thin film libraries to determine efficiently the areas of interest in a materials system. Areas of interest are compositions which show distinctive properties. The crystallinity of the thus determined areas is identified by X-ray diffraction. Additionally, by using automated nanoindentation across the materials library, mechanical data of the thin films can be obtained which complements the identification of areas of interest. The feasibility of this approach is demonstrated by using a Ni-Al thin film library as a reference system. The obtained results promise that this approach can be used for the case of ternary and higher order systems. © 2014 American Chemical Society.
    view abstract10.1021/co5000757
  • Sudden stress-induced transformation events during nanoindentation of NiTi shape memory alloys
    Laplanche, G. and Pfetzing-Micklich, J. and Eggeler, G.
    Acta Materialia 78 (2014)
    This study investigates the stress-induced formation of martensite during nanoindentation of an austenitic NiTi shape memory alloy, where stress-induced martensite is stable at room temperature. An individual grain with a [1 1 1] surface normal was selected for spherical ex situ and in situ nanoindentation in a scanning electron microscope. The in situ load-displacement curves show several pop-ins which occur concomitantly with the formation of traces around the contact zone between the indenter tip and the sample. These traces exhibit a threefold symmetry around the remnant indent. A detailed study of the indentation-induced surface relief by atomic force microscopy before and after shape recovery allows to identify the formation of six twinned martensite plates. Post-mortem microstructural characterization shows that these twinned martensite plates are growing as the applied load is increasing. The activation of the experimentally observed twinned martensite plates is rationalized by analytical calculations of resolved shear stress and mechanical interaction energy density. Finally, the in situ nanoindentation results in combination with the post-mortem microstructural characterization show that the most likely deformation mechanism responsible for pop-in events corresponds to sudden increases of the thicknesses of twinned martensite plates. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.actamat.2014.05.061
  • The effect of notches on the fatigue behavior in NiTi shape memory alloys
    Wang, X.M. and Cao, W. and Deng, C.H. and Liu, H. and Pfetzing-Micklich, J. and Yue, Z.F.
    Materials Science and Engineering A 610 (2014)
    Fatigue experiments have been performed on superelastic NiTi double-notched plate form specimens with different notch types and sizes. The fatigue loading was controlled by the average stress at the minimum cross-section. The fatigue life as well as the fatigue fracture surface has been investigated in detail. The fatigue life decreases from specimens without notches, to specimens with semi-circular notches followed by v-type notched specimens. Specimens with crack notches show the shortest fatigue lives. The fatigue life decreases with increasing the notch acuity. Not only notch type but also notch size affects the fatigue life under the same macro-average stress. The fatigue fracture surfaces are quite similar to those of the conventional ductile materials with crack initiation, propagation and final fracture area. Typical characteristics of low cycle fatigue surfaces such as multi-fatigue crack initiation sites, weak striations and tyre-like patterns were found. Finite element (FE) simulations were performed to investigate the stress and phase transformation distributions in order to explain and understand the experimental results. © 2014 Elsevier B.V.
    view abstract10.1016/j.msea.2014.04.109
  • Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys
    Rahim, M. and Frenzel, J. and Frotscher, M. and Pfetzing-Micklich, J. and Steegmüller, R. and Wohlschlögel, M. and Mughrabi, H. and Eggeler, G.
    Acta Materialia 61 (2013)
    In the present work we show how different oxygen (O) and carbon (C) levels affect fatigue lives of pseudoelastic NiTi shape memory alloys. We compare three alloys, one with an ultrahigh purity and two which contain the maximum accepted levels of C and O. We use bending rotation fatigue (up to cycle numbers &gt;108) and scanning electron microscopy (for investigating microstructural details of crack initiation and growth) to study fatigue behavior. High cycle fatigue (HCF) life is governed by the number of cycles required for crack initiation. In the low cycle fatigue (LCF) regime, the high-purity alloy outperforms the materials with higher number densities of carbides and oxides. In the HCF regime, on the other hand, the high-purity and C-containing alloys show higher fatigue lives than the alloy with oxide particles. There is high experimental scatter in the HCF regime where fatigue cracks preferentially nucleate at particle/void assemblies (PVAs) which form during processing. Cyclic crack growth follows the Paris law and does not depend on impurity levels. The results presented in the present work contribute to a better understanding of structural fatigue of pseudoelastic NiTi shape memory alloys. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.actamat.2013.02.054
  • On the crystallographic anisotropy of nanoindentation in pseudoelastic NiTi
    Pfetzing-Micklich, J. and Somsen, C. and Dlouhy, A. and Begau, C. and Hartmaier, A. and Wagner, M.F.-X. and Eggeler, G.
    Acta Materialia 61 (2013)
    We use a nanoindenter with a Berkovich tip to study local mechanical properties of two polycrystalline intermetallics with a B2 crystal structure, NiAl and NiTi. We use orientation imaging scanning electron microscopy to select a relevant number of grains with appropriate sizes and surface normals parallel to 〈0 0 1〉, 〈1 0 1〉 and 〈1 1 1〉. As a striking new result, we find a strong crystallographic orientation dependence for NiTi. This anisotropy is less pronounced in the case of NiAl. For NiTi, the indentation force required to impose a specific indentation depth is highest for indentation experiments performed in the 〈0 0 1〉 direction and lowest along the 〈1 1 1〉 direction. We consider transmission electron microscopy results from cross-sections below the indents and use molecular dynamics simulations and resolved shear stress calculations to discuss how this difference can be accounted for in terms of elementary deformation and transformation processes, related to dislocation plasticity (NiAl and NiTi), and in terms of the stress-induced formation and growth of martensite (NiTi). Our results show that the crystallographic anisotropy during nanoindentation of NiTi is governed by the orientation dependence of the martensitic transformation; dislocation plasticity appears to be less important. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.actamat.2012.09.081
  • Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale
    Pfetzing-Micklich, J. and Ghisleni, R. and Simon, T. and Somsen, C. and Michler, J. and Eggeler, G.
    Materials Science and Engineering A 538 (2012)
    NiTi shape memory alloys can be used as micro actuators and small scale pseudoelastic components. Therefore there is a need to characterize their mechanical properties on the micro scale. In several previous studies, such tests (nanoindentation, pillar compression) were performed for different NiTi alloys. However, no consistent results concerning the coupling between plastic deformation and martensitic transformation were obtained. Moreover it is unclear whether the material's response to loading on the micro scale reflects its large scale mechanical anisotropy. In this study, we investigate a binary, solution annealed precipitate free NiTi alloy and compress small pillars in <0. 0. 1>-, <1. 0. 1>- and <1. 1. 1>-directions. Mechanical results are analyzed in the light of SEM and post-mortem TEM investigations. We identify deformation mechanisms and show that there is deformation anisotropy. We show that micro pillar testing yields results which are in good qualitative agreement with previous work from macroscopic investigations. © 2012 Elsevier B.V.
    view abstract10.1016/j.msea.2012.01.042
  • Thickness-dependence of the B2-B19 martensitic transformation in nanoscale shape memory alloy thin films: Zero-hysteresis in 75 nm thick Ti 51Ni38Cu11 thin films
    König, D. and Buenconsejo, P.J.S. and Grochla, D. and Hamann, S. and Pfetzing-Micklich, J. and Ludwig, Al.
    Acta Materialia 60 (2012)
    The influence of film thickness on the B2-B19 martensitic transformation properties of nanoscale Ti51Ni38Cu11 thin films with thicknesses ranging from 750 to 50 nm is reported. For these films an unexpected behavior of the phase transformation temperatures was observed: Af and Os initially decrease with decreasing film thickness but increase sharply again for thicknesses < 100 nm. The phase transformation temperatures and thermal hysteresis width range from 58 to 35 °C (Af) and 14 to ∼0 K, respectively. For the first time we can show that substrate-attached Ti-Ni-Cu thin films as thin as 50 nm show reversible B2-B19 phase transformations. Furthermore, it is shown that with decreasing film thickness a change in the tetragonality of the B19 martensite phase occurs. This leads to fulfilling the so-called λ2 criterion, causing a vanishing hysteresis for a film thickness of 75 nm. © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.actamat.2011.09.037
  • Micro-shear deformation of pure copper
    Pfetzing-Micklich, J. and Brinckmann, S. and Dey, S.R. and Otto, F. and Hartmaier, A. and Eggeler, G.
    Materialwissenschaft und Werkstofftechnik 42 (2011)
    In this paper a new micro-shear experiment is introduced using a double shear specimen machined by a focused ion beam technique. The micro-shear specimen is structured from pure copper promoting (111) [101] slip. Comparing scanning electron microscopy images before and after deformation provides evidence for localized shear. Load-displacement data identify a load plateau and characterize the localized shear process (critical shear-stress for activation of (111) [101] slip: 170 MPa). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA.
    view abstract10.1002/mawe.201100715
  • Axial-torsional thermomechanical fatigue of a near-γ TiAl-alloy
    Brookes, S.P. and Kühn, H.-J. and Skrotzki, B. and Klingelhöffer, H. and Sievert, R. and Pfetzing, J. and Peter, D. and Eggeler, G.
    Materials Science and Engineering A 527 (2010)
    The uniaxial, torsional and axial-torsional thermomechanical fatigue (TMF) behavior of the near-γ TiAl-alloy TNB-V5 was investigated. TMF tests were performed at 400-800°C with mechanical strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted thermomechanically in-phase (IP) and out-of-phase (OP).For the same lifetimes, uniaxial IP tests required the highest strain amplitudes, while OP test conditions were most damaging and needed the lowest strain amplitudes. The Mises equivalent mechanical strain amplitudes of pure torsional tests were found in between uniaxial in-phase and out-of-phase tests for the same lifetimes. The non-proportional multiaxial out-of-phase test showed a lower lifetime at the same equivalent mechanical strain amplitude compared to the other types of tests.The microstructure has been characterized applying electron microscopy and microstructural parameters such as fraction of twinned grains, grain size, lamellar distance and dislocation density have been quantified. © 2010 Elsevier B.V.
    view abstract10.1016/j.msea.2010.03.073
  • Nanoindentation of a pseudoelastic NiTiFe shape memory alloy
    Pfetzing-Micklich, J. and Wagner, M.F.-X. and Zarnetta, R. and Frenzel, J. and Eggeler, G. and Markaki, A.E. and Wheeler, J. and Clyne, T.W.
    Advanced Engineering Materials 12 (2010)
    Nanoindentation is a suitable tool for characterizing the local mechanical properties of shape memory alloys (SMA) and to study their pseudoelastic behavior. There is a special interest in indenting with different indenter tips (as not all tips are associated with strain states that predominantly induce the martensitic transformation) and in indenting at different temperatures, where different phases are present. In this study, we perform nanoindentation on a ternary NiTiFe SMA with different indenter tips and at various testing temperatures. For nanoindentation with spherical tips, load-displacement hystereses clearly indicate pseudoelastic behavior, whereas indentation with Berkovich tips results in more pronounced plastic deformation. Testing at different temperatures is associated with different volume fractions of austenite, martensite, and R-phase. The corresponding nanoindentation responses differ considerably in terms of pseudoelastic behavior. Best pseudoelastic recovery is found at testing temperatures close to the R-phase start temperature, even though this temperature is below the austenite finish temperature, which is a well-known lower temperature bound for full recovery in macroscopic tests. Our results are discussed considering micromechanical aspects and the interaction between stress-induced phase transformation and dislocation plasticity. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    view abstract10.1002/adem.200900266
  • deformation

  • martensite

  • nanoindentation

  • shape-memory alloys

  • thin films

« back