Dr. Thomas Wiederkehr

Computer Graphics
TU Dortmund University

Contact
Author IDs

Hub
  • Simulation based iterative post-optimization of paths of robot guided thermal spraying
    Hegels, D. and Wiederkehr, T. and Müller, H.
    Robotics and Computer-Integrated Manufacturing 35 (2015)
    Robot-based thermal spraying is a production process in which an industrial robot guides a spray gun along a path in order to spray molten material onto a workpiece surface to form a coating of desired thickness. This paper is concerned with optimizing a given path of this sort by post-processing. Reasons for doing so are to reduce the thickness error caused by a not sufficiently precise design of the given path, to adapt the path to a changed spray gun or spray technology, to adapt the path to slight incremental changes of the workpiece geometry, or to smooth the path in order to improve its execution by the robot. An approach to post-optimization using the nonlinear conjugate gradient method is presented which employs a high-quality GPGPU-based simulation of the spray process for the evaluation of the coating thickness error and additionally taking care of the kinematic path quality. The number of computationally time-consuming calls of the simulation is kept low by analytically calculating estimates of gradients from a simplified material deposition model. A rigorous experimental evaluation on case studies of the mentioned applications shows that the method efficiently delivers improved paths which reduce the coating error on real free form surfaces considerably, i.e. the squared coating error is below 3.5% of the original value in every case study. © 2015 Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.rcim.2015.02.002
  • Efficient Large-Scale Coating Microstructure Formation Using Realistic CFD Models
    Wiederkehr, T. and Müller, H.
    Journal of Thermal Spray Technology 24 (2014)
    For the understanding of physical effects during the formation of thermally sprayed coating layers and the deduction of the macroscopic properties of a coating, microstructure modeling and simulation techniques play an important role. In this contribution, a coupled simulation framework consisting of a detailed, CFD-based single splat simulation, and a large-scale coating build-up simulation is presented that is capable to compute large-scale, three-dimensional, porous microstructures by sequential drop impingement of more than 10,000 individual particles on multicore workstation hardware. Due to the geometry-based coupling of the two simulations, the deformation, cooling, and solidification of every particle is sensitive to the hit surface area and thereby pores develop naturally in the model. The single splat simulation employs the highly parallel Lattice-Boltzmann method, which is well suited for GPU-acceleration. In order to save splat calculations, the coating simulation includes a database-driven approach that re-uses already computed splats for similar underground shapes at the randomly chosen impact sites. For a fast database search, three different methods of efficient pre-selection of candidates are described and compared against each other. © 2014, ASM International.
    view abstract10.1007/s11666-014-0194-y
  • Acquisition and optimization of three-dimensional spray footprint profiles for coating simulations
    Wiederkehr, T. and Müller, H.
    Journal of Thermal Spray Technology 22 (2013)
    For the simulation of thermal spray coating build-up and the prediction of the coating-thickness distribution on given workpieces, an accurate representation of the mass flow emitted from the spray torch is essential. For two-dimensional (2D) simulations, this flow function often is acquired by measuring the coating thickness in cross-sectional profiles of linear spray beads, and for 3D simulations, usually some form of rotationally symmetric normal distribution function is fitted to measured profile data. However, when using free-formed complex workpieces or arbitrary and nonuniform spray paths, more realistic, nonsymmetric, and 3D flow functions are required. We present an approach to acquire accurate and fully 3D flow distribution functions by measuring 3D coating profiles which result from spraying onto a flat surface with a stationary gun, and improving them by means of a developed optimization method that takes more precise cross-sectional measurements into account. This approach thus combines the advantages of the higher accuracy of 2D measurements while fully preserving the 3D characteristics of the measured profile. © 2013 ASM International.
    view abstract10.1007/s11666-013-9927-6
  • Fast, curvature-based prediction of rolling forces for porous media based on a series of detailed simulations
    Wiederkehr, T. and Klusemann, B. and Müller, H. and Svendsen, B.
    Advances in Engineering Software 42 (2011)
    Using thermal spraying various surface coatings consisting of different material compositions can be manufactured. Besides different solid phases the resulting coating microstructure often contains a non-negligible amount of pores. In this context a roller burnishing process with a hydrostatic ball-point-tool is examined to compact the thermally sprayed coating, thereby reducing porosity. The rolling process is performed by a robot on free-formed workpieces. A simulation concept for the prediction of forces in a robot-guided roller burnishing process based on a series of detailed ABAQUS simulations is presented. It is shown that, based on these test configurations, the process forces can be calculated much faster and with sufficient precision. Thereby an optimal rolling path, which requires the least amount of normal force to be applied, can be determined efficiently leading to the decision whether a specific robot is equipped to handle the path. Furthermore, the described approach may be used as a pattern to apply similar methods to other engineering problems where accurate simulative solutions exist, but cannot be applied to problems of realistic size due to their expenditure of time. © 2010 Elsevier Ltd. All rights reserved.
    view abstract10.1016/j.advengsoft.2011.01.001
  • An image morphing method for 3D reconstruction and FE-analysis of pore networks in thermal spray coatings
    Wiederkehr, T. and Klusemann, B. and Gies, D. and Müller, H. and Svendsen, B.
    Computational Materials Science 47 (2010)
    Using thermal spraying various surface coatings consisting of different material compositions can be manufactured. Besides different solid phases the resulting coating microstructure often contains a non-negligible amount of pores altering their mechanical properties. A common practice to analyze the porosity and composition of a coating is to create cross section images using standard light microscopy equipment or a scanning electron microscope. In this paper a method is presented to construct a three-dimensional multiphase model of the coating from a number of such cross section images by means of an image morphing technique. The resulting model can then be used for visualization purposes or further analysis e.g. within a finite element simulation. The described method has been applied to the construction of a finite element model of a porous coating sample which is used in a compaction simulation to determine its behavior in a rolling process. The required cross section images were obtained using a successive grinding and microscopy procedure. The material behavior of the porous material is modeled by using a modified Johnson-Cook material model formulation for an elasto-viscoplastic material. Comparison of 2D and 3D-simulation results are shown. © 2009 Elsevier B.V. All rights reserved.
    view abstract10.1016/j.commatsci.2009.11.019
  • coatings

  • mechanical properties

  • porous materials

  • robots

« back