Transporting Hydrogen as Iron

Safe and Efficient


(c) UDE/Silke Rink

The transport of green-generated energy in the form of iron. This is the vision of the "Me2H2 iron-steam process" project coordinated by the University of Duisburg-Essen. Hydrogen generated by means of solar energy, a chemical reaction and transport in metal form lead to a sustainable cycle. Together with partners from Clausthal and Bremen and associated industrial partners, the team aims to develop a concept for implementation on an industrial scale and has received funding from the German Federal Ministry of Education and Research (BMBF).

While one option is to store and transport hydrogen as ammonia, the team led by Dr.-Ing. Rüdiger Deike, UDE professor of metallurgy and forming technology, is instead pursuing an approach whose cycle could look like this, for example:

At a location with high solar radiation and readily available water resources, photovoltaic systems supply electrical energy. This is used to split water into oxygen and H2. Now only iron oxide is added for the subsequent chemical reaction. Here, reduction with hydrogen produces iron, which can be transported in the form of mini-briquettes or spherical pellets without environmental risk. At the destination, the reverse reaction is initiated to obtain hydrogen and iron oxide again.

The engineering team's main goal is to find suitable iron alloys that can undergo the chemical reactions as many times as possible without losses. "To develop the most efficient combination - of the best material systems and the process technology adapted to them," explains project coordinator Deike.

The BMBF is funding the project, which has just started, for three years with a total of 1.3 million euros as part of the "Hydrogen Republic of Germany" ideas competition. In addition to the UDE engineers, the Clausthal University of Technology and the Leibniz Institute for Materials-Oriented Technologies (IWT) in Bremen are also involved. Associated partners are thyssenkrupp Steel Europe AG and SMS group GmbH.

https://www.uni-due.de/2022-08-08-wasserstoff-als-eisen-transportieren