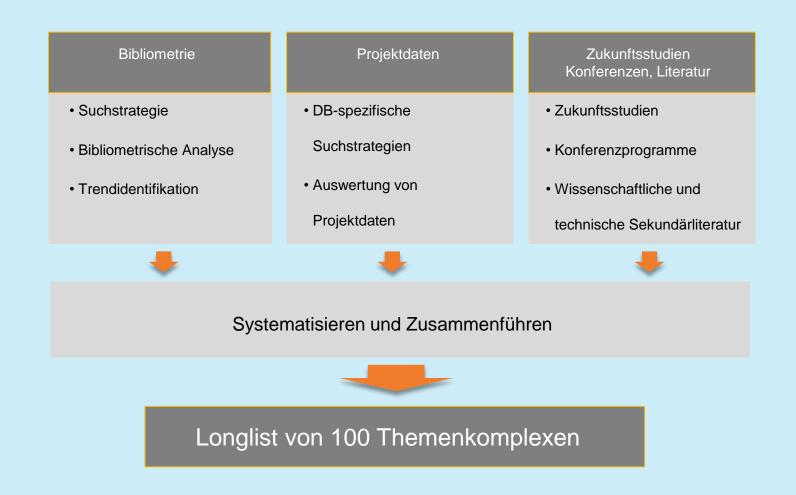


Trendstudie für die Materials Chain

Dr. Dirk Holtmannspötter, Eva Cebulla (VDI TZ)


Dr. Dirk Tunger, Andreas Meier (Forschungszentrum Jülich)

TU Dortmund, Dortmund

13. Oktober 2017

Modul 1 – drei Suchstränge

Kandidatenthemen für Vertiefungen in Modul 2

Shortlist von 9 Themen, die im Hinblick auf die Kriterien:

- Zeithorizont von 10 bis 15 Jahren und Bezug zu großen Trends
- Einklang mit Schlüsselthemen großer Förderprogramme (~politische oder wissenschaftliche Relevanz)
- passend zur Region und
- passend zu den Stärken / Kompetenzen der Materials Chain

vielversprechend erscheinen.

Diskussion bei der Ergebnispräsentation von Modul 1 führte zur:

Auswahl von 6 Themen für Modul 2

Ausgewählte Themen für Modul 2

- 1. Surfaces and Interfaces (incl. Nano)
- 2. Nano-2-Giga: Stahl, Beton & Zement
- 3. Zirkuläre Wertschöpfung und Ressourceneffizienz
- 4. Materialforschung für die Produktion der Zukunft
- 5. Quantification and Prediction in Materials Design
- 6. Materials for novel electronics

Bewertungsdimensionen je Themen

- 1. Dynamik und internationale Positionierung
- 2. Positionierung und Passfähigkeit MC
- 3. Teilthemen und Zukunftsbezüge
- 4. Passfähigkeit Förderprogramme
- 5. Top-Down Bezüge zu technologischen Megatrends
- 6. Top-Down Bezüge zu gesellschaftlichen Herausforderungen

Passfähigkeit – Förderprogramme – Vorbemerkung

- Entwurfsfassungen von Arbeitsprogrammen aus den beiden Bereichen "Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing" (NMBP) und "FET-Proactive" im europäischen Forschungsrahmenprogramm "Horizon 2020" als Grundlage der Einschätzungen
- Disclaimer: "This draft is made public before the adoption of the work programme 2018-2020 to provide potential participants with the currently expected main lines of this work programme. Only the adopted work programme will have legal value."
- → Bis zur finalen und rechtsgültigen Publikation der Arbeitsprogramme können sich noch Änderungen ergeben. Daher sind die abgegebenen Einschätzungen zu den Fördermöglichkeiten in diesem Sinne ebenfalls als vorläufig zu betrachten.

Abkürzungen:

- FET: Future and Emerging Technologies, Programmlinie Proactive (TRL 1-3/4)
- LEIT-NMBP: 'Leadership in enabling and industrial technologies –
 Nanotechnologies, Advanced Materials, Biotechnology and Advanced Manufacturing and Processing'. (TRL 3/4/5-6/7)
- TRL Technology Readiness Level; RIA Research and Innovation Action; IA Innovation Action; CSA Coordination and Support Action

Passfähigkeit – Förderprogramme – ohne Bezug zu den 6 Themen

3.3. CLEAN ENERGY THROUGH INNOVATIVE MATERIALS

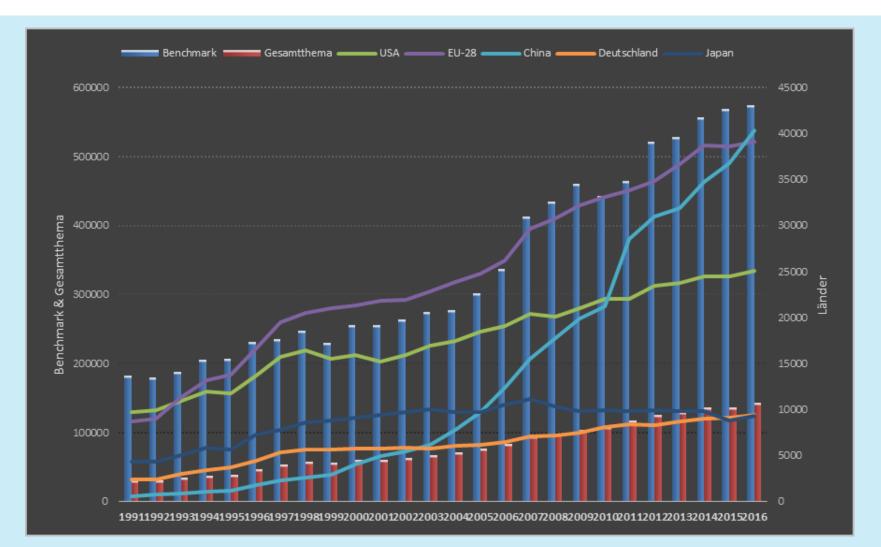
LC-NMBP-27-2019: EU materials technologies for non-automotive battery storage (RIA)

LC-NMBP-29-2019: Materials for non-battery based energy storage (RIA)

LC-NMBP-30-2018: Materials for future highly performant electrified vehicle batteries (RIA)

LC-NMBP-31-2020: Materials for off shore energy (IA)

LC-NMBP-32-2019: Smart materials, systems and structures for energy harvesting (RIA)

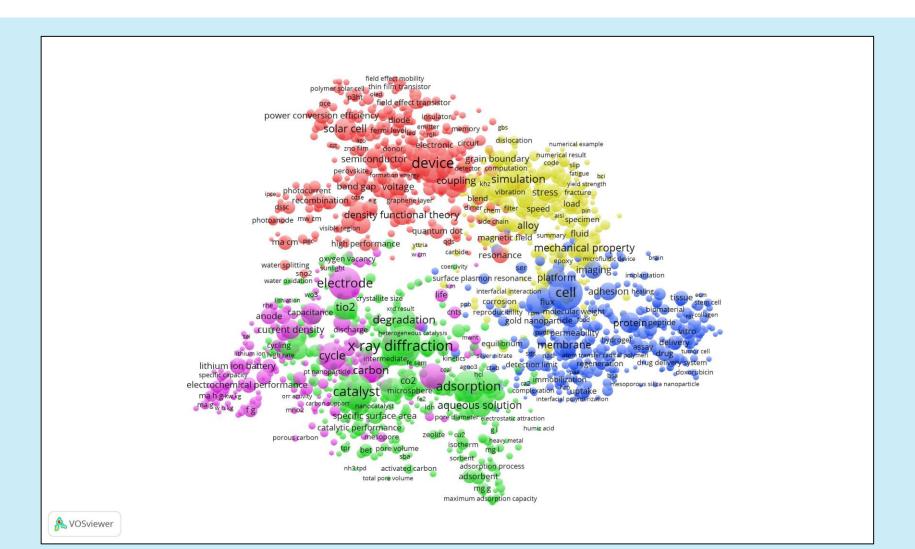

3.4. CULTURAL HERITAGE

NMBP-33-2018: Innovative and affordable solutions for the preventive conservation of cultural heritage (IA)

3.5. ENERGY-EFFICIENT BUILDINGS (EEB)

LC-EEB-01-2019: Integration of energy smart materials in non-residential buildings (IA)

1. Thema: Surfaces and Interfaces (incl. Nano) Dynamik und internationale Positionierung



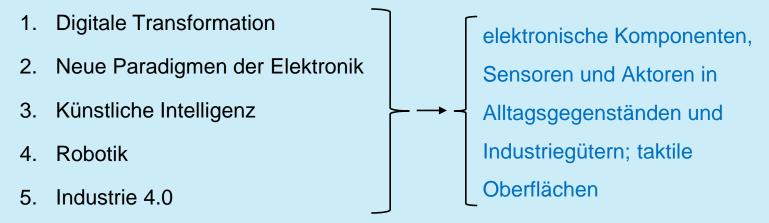
1. Thema: Surfaces and Interfaces (incl. Nano) Positionierung und Passfähigkeit MC

		Publikationen			Imp	act
Rang		Summe	MC	Anteil MC	Zitationen	ZitRate
1	Karlsruher Institut für Technologie	5054	86	1,7%	46744	9,2
2	Technische Universität Dresden	1915	15	0,8%	18133	9,5
3	Rheinisch-Westfälische Technische Hochschule Aachen	1851	61	3,3%	14985	8,1
4	Technische Universität München	1728	33	1,9%	16452	9,5
5	Forschungszentrum Jülich GmbH (FZJ)	1696	152	9,0%	15041	8,9
6	Friedrich-Alexander-Universität Erlangen-Nürnberg	1675	19	1,1%	16565	9,9
7	Technische Universität Berlin	1273	29	2,3%	12875	10,1
8	Technische Universität Darmstadt	1267	23	1,8%	10637	8,4
9	Helmholtz-Zentrum Berlin für Materialien und Energie	1253	33	2,6%	14202	11,3
10	Universität Stuttgart	1111	10	0,9%	7173	6,5
11	Ruhr-Universität Bochum	1041	547	52,5%	9119	8,8
12	Albert-Ludwigs-Universität Freiburg im Breisgau	843	8	0,9%	6864	8,1
13	Universität Duisburg-Essen	840	604	71,9%	7918	9,4
53	Technische Universität Dortmund	396	198	50,0%	2654	6,7
5	Materials Chain	1718	1718	100,0%	16902	9,8

1. Thema: Surfaces and Interfaces (incl. Nano) Teilthemen

1. Thema: Surfaces and Interfaces (incl. Nano) Teilthemen - Zukunftsbezüge

- Thermo-Fluids → Combustion
- Oxidische Heterostrukturen; multiferroische Materialien → Messtechn. und IT
- Hetero-Interfaces → semiconductors, solar cells, organic FETs, biosensors
- Oxide formation → corrosion
- Topological phases of matter; strong electronic correlations → spintronics
- wasserstoffbrückenbildende Flüssigkeiten → allg. Anwendungspotenzial
- ultra-thin layers of large organic molecules → molecular electronics, solar energy conversion, catalysis, sensor development, biointerfacial engineering
- künstliche und multifunktionale Nanosysteme → IT, Biotechnologie
- realize functional nanostructures → create a "Nano Valley" (Rhine)
- Turn Nanoscience into nanotechnology.
- Schichtsysteme → Photokatalyse gasförmiger toxischer Umweltverschmutzungen
- Be- und Entnetzung → Drucktechnik, Wärmeübertrager, Mikrofluidik, lab-on-chip


1. Thema: Surfaces and Interfaces (incl. Nano) Passfähigkeit – Förderprogramme

- LC-NMBP-28-2020: Advanced materials for innovative <u>multilayers</u> for durable photovoltaics (IA)
- DT-NMBP-03-2019: Open Innovation Test Beds for nano-enabled <u>surfaces</u> and membranes
 (IA)
- DT-NMBP-04-2020: Open Innovation Test Beds for bio-based <u>nano-materials</u> and solutions
 (IA)

Ggf. relevant:

- DT-NMBP-01-2018: Open Innovation Test Beds for Lightweight, nano-enabled multifunctional composite materials and components (IA); DT-NMBP-05-2020: Open Innovation Test Beds for functional materials for building envelopes (IA); DT-NMBP-06-2020: Open Innovation Test Beds for nano-pharmaceuticals production (IA)
- DT-NMBP-02-2018: Open Innovation Hubs for Safety Testing of Medical Technologies for Health
- NMBP-13-2018: Risk Governance of nanotechnology; NMBP-14-2018: Nanoinformatics: from materials models to predictive toxicology and ecotoxicology; NMBP-16-2020: Safe by design, from science to regulation: behaviour of multi-component nanomaterials (RIA)

1. Thema: Surfaces and Interfaces (incl. Nano) Top-Down – Bezüge zu technologischen Megatrends

- 3D-Druck → mit Metallen Korrosionsschutz; Losgröße 1
- 7. Elektromobilität und autonomes Fahren → Leichtbau-Verbundmaterialien mit Oberflächenfunktionalisierungen zur Stabilisierung; Bedienelemente
- 8. Nanosysteme → Bezug ist offensichtlich
- 9. Synthetische Biologie
- 10. Genomik/Proteomik/Metabolomik

1. Thema: Surfaces and Interfaces (incl. Nano) Top-Down – Bezüge zu gesellschaftlichen Herausforderungen

- 1. Ernährung → Lebensmittelverpackungen
- 2. Gesundes Leben → biokompatible Implantate, antibakteriell
- 3. Demographischer Wandel
- 4. Wasser und Sanitärversorgung
- 5. Erneuerbare Energieversorgung → Energiespeicher und -wandler
- Nachhaltiges Wirtschaften, Produzieren und Konsumieren → Haltbarkeit,
 Materialeinsparung, Leichtbau
- 7. Widerstandsfähige Infrastruktur → Zustandsmonitoring von Bauteilen
- 8. Städte (Urbanisierung, Sicherheit, Mobilität) → smart windows
- Klimawandel
- 10. Ozeane und Landökosysteme schützen → Ersatz toxischer Stoffe (Cr, Cd,...)

Fazit zu Thema 1. Surfaces and Interfaces (incl. Nano)

Dynamik und internationale Positionierung

Sehr breites Thema; umfasst seit 1999 relativ konstant ca. 25% des

Benchmarks

Positionierung und Passfähigkeit MC

Thema mit höchstem MC-Output in absoluten Zahlen, daher

Querschnittscharakter als übergreifendes MC-Thema möglich; MC in den

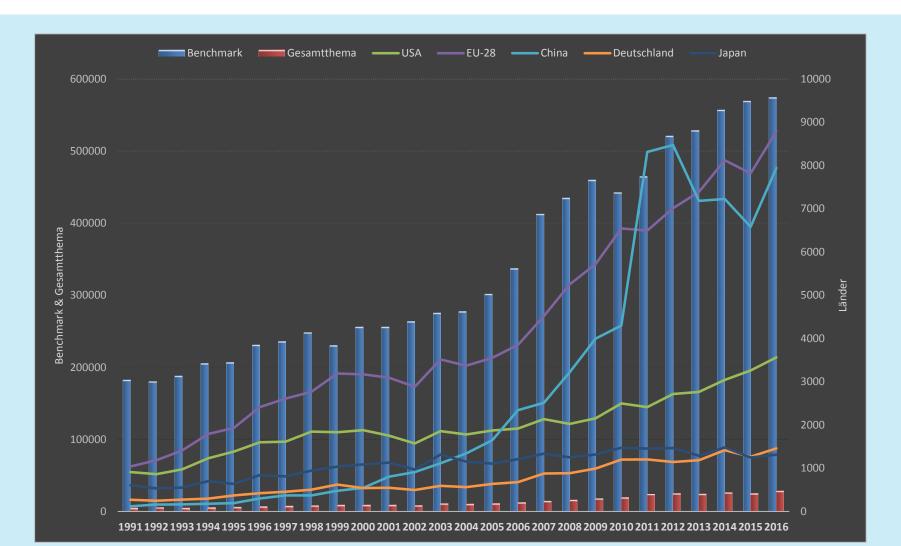
Top-5 in Deutschland

Passfähigkeit – Förderprogramme

Fördermöglichkeiten für bestimmte Teilthemen erkennbar

Zukunftsbezüge und regionale Bezüge

zu vielen Megatrends über die vielfältigen Anwendungen und

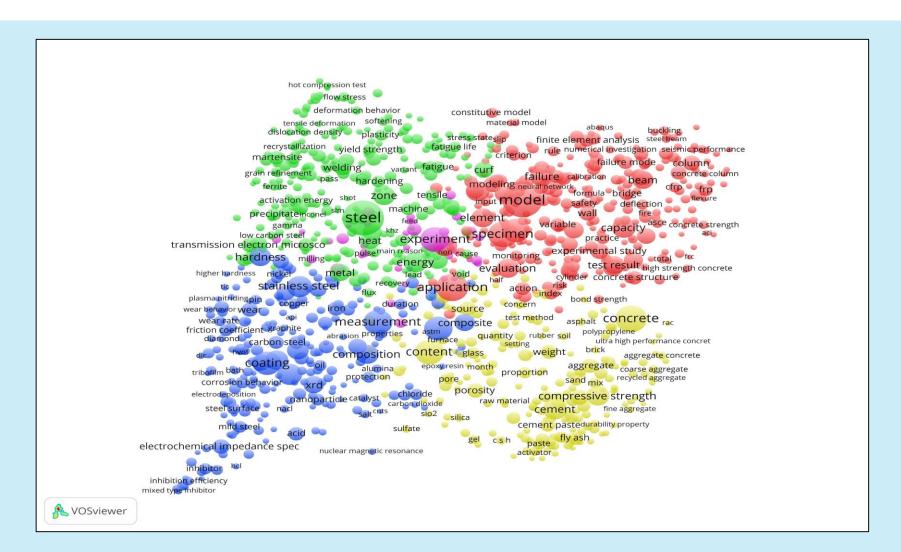

Anwendungsbranchen, so auch Bezug zum Ruhrgebiet möglich

Thema 1.: Mögliches "Out-of-the-Box"-Teilthema

Mikroorganismen auf technischen Ober- und Grenzflächen

- Hohe öffentliche Aufmerksamkeit möglich, vgl. etwa: Nature 20. Juli 2017: "CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria"
- Regionaler Bezug: u.a. Biofilm Centre Univ. Duisburg-Essen
- Fördermöglichkeit: FET FETPROACT-01-2018: u. a.
 - Artificial organs, tissues, cells and sub-cellular structures
 - Living technologies
- klarer Zusammenhang mit technologischen Megatrends als Treibern siehe Notizen

2. Thema: Nano-2-Giga: Stahl, Beton & Zement Dynamik und internationale Positionierung



2. Thema: Nano-2-Giga: Stahl, Beton & Zement Positionierung und Passfähigkeit MC

		Publikationen			Imp	oact
Rang		Summe	MC	Anteil MC	Zitationen	ZitRate
1	Karlsruher Institut für Technologie	616	12	2%	3626	5,89
2	Rheinisch-Westfälische Technische Hochschule Aachen	495	30	6%	3563	7,20
3	Technische Universität Bergakademie Freiberg	287	0	0%	1358	4,73
4	Technische Universität Dresden	261	6	2%	1430	5,48
5	Max-Planck-Institut für Eisenforschung GmbH	254	142	56%	4111	16,19
6	Bundesanstalt für Materialforschung und -prüfung	252	2	1%	1196	4,75
7	Ruhr-Universität Bochum	193	107	55%	1208	6,26
8	Technische Universität München	190	3	2%	1135	5,97
9	Universität Stuttgart	177	0	0%	728	4,11
10	Friedrich-Alexander-Universität Erlangen-Nürnberg	157	2	1%	999	6,36
11	Gottfried Wilhelm Leibniz Universität Hannover	143	6	4%	664	4,64
12	Technische Universität Darmstadt	133	0	0%	578	4,35
13	Technische Universität Dortmund	116	92	79%	654	5,64
26	Universität Duisburg-Essen	60	40	67%	175	2,92
3	Materials Chain	380	380	100%	4371	11,50

Technologiezentrum

2. Thema: Nano-2-Giga: Stahl, Beton & Zement Teilthemen

Technologiezentrum

2. Thema: Nano-2-Giga: Stahl, Beton & Zement Teilthemen - Zukunftsbezüge

- Werkstoff-Design einer neuen Klasse von Strukturwerkstoffen mit einer außergewöhnlichen Eigenschaftskombination von Festigkeit und Umformbarkeit → Verknüpfung abstrakter naturwissenschaftlicher Theorien mit ingenieurwissenschaftlich etablierten Konzepten
- Verbundwerkstoffe auf der Basis innovativer TRIP-Stähle und Zirkondioxid-Keramiken → weltweit in dieser Systematik einzigartige "Hochzeit", ressourceneffiziente und umweltgerechte Lösungen; Sicherheitsanwendungen in der Verkehrstechnik
- fundamental research on the various aspects of HPC software → paradigm shift from sequential or just moderately parallel to massively parallel processing
- bauteilspezifische Grundlagenforschung → ästhetischer Paradigmenwechsel, Leichtbau nach dem Prinzip "form follows force", Einsparung von natürlichen Ressourcen und von Energie, Reduktion des Verminderung des CO₂-Ausstoßes
- Materialdegradation von Hochleistungsbetonen in Kombination neuester experimenteller und virtuellnumerischer Methoden → weitgespannte Brücken des Hochgeschwindigkeitszugverkehrs, Windenergieanlagen oder Maschinenfundamente
- Konstruktionen aus Beton oder Stahlbeton → Bauwerke durch Applikation von flächigen, dünnschichtigen Verstärkungen deutlich widerstandsfähiger zu machen gegen Stoß, Detonation oder Erdbeben

2. Thema: Nano-2-Giga: Stahl, Beton & Zement Passfähigkeit – Förderprogramme

Virtual Focus Areas in NMBP:

DT: Digital Transformation

CE: Circular Economy

LC: Low Carbon

- CE-SPIRE-03-2018: Energy and resource flexibility in highly energy intensive industries (IA 50%) → evt. relevant
- DT-NMBP-01-2018: Open Innovation Hubs for Lightweight nano-enabled multifunctional composite materials and components → evt. auch für Leichtbau mit Stahl relevant?

2. Thema: Nano-2-Giga: Stahl, Beton & Zement Top-Down – Bezüge zu technologischen Megatrends

- 1. Digitale Transformation
- 2. Neue Paradigmen der Elektronik
- 3. Künstliche Intelligenz → Anwendung im Material-Design auch für Stahl
- 4. Robotik
- Industrie 4.0 → in der Stahl- und Zementherstellung
- 6. 3D-Druck → Großformatiger 3D-Druck im Bausektor
- 7. Elektromobilität und autonomes Fahren → Leichtbau mit Stahl
- 8. Nanosysteme
- 9. Synthetische Biologie → Herstellung von kaltem Zement ohne Brennprozesse
- 10. Genomik/Proteomik/Metabolomik

2. Thema: Nano-2-Giga: Stahl, Beton & Zement Top-Down – Bezüge zu gesellschaftlichen Herausforderungen

- 1. Ernährung
- Gesundes Leben
- 3. Demographischer Wandel
- 4. Wasser und Sanitärversorgung
- 5. Erneuerbare Energieversorgung → für die Produktion von Stahl und Zement
- Nachhaltiges Wirtschaften, Produzieren und Konsumieren →
 Rohstoffverfügbarkeit Zink?
- 7. Widerstandsfähige Infrastruktur
- 8. Städte (Urbanisierung, Sicherheit, Mobilität) → Ersatz für Bausand finden
- 9. Klimawandel → CO₂-Einsparung bei der Herstellung von Stahl und Zement !!
- 10. Ozeane und Landökosysteme schützen

Fazit zu Thema 2. Nano-2-Giga: Stahl, Beton & Zement

Dynamik und internationale Positionierung

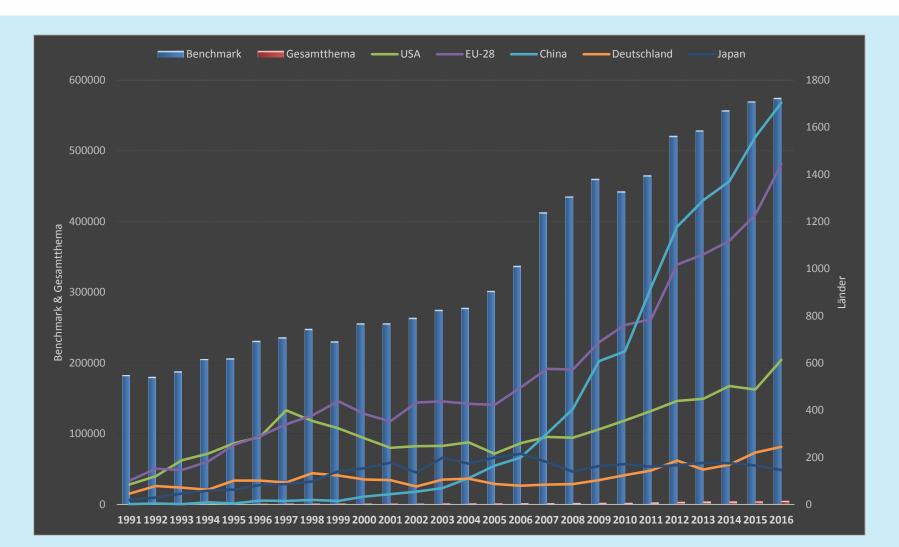
Wachstum relativ zum Benchmark bis 2011, danach Wachstum in etwa wie der

Benchmark, Deutschland nach Zahl der Publikationen an Platz 4

Positionierung und Passfähigkeit MC

MC mit Spitzenposition bei der Zitationsrate in Deutschland - Kooperation mit dem Max-Planck-Institut für Eisenforschung; Kooperationsquote zwischen den drei Universitäten niedrig

Passfähigkeit – Förderprogramme

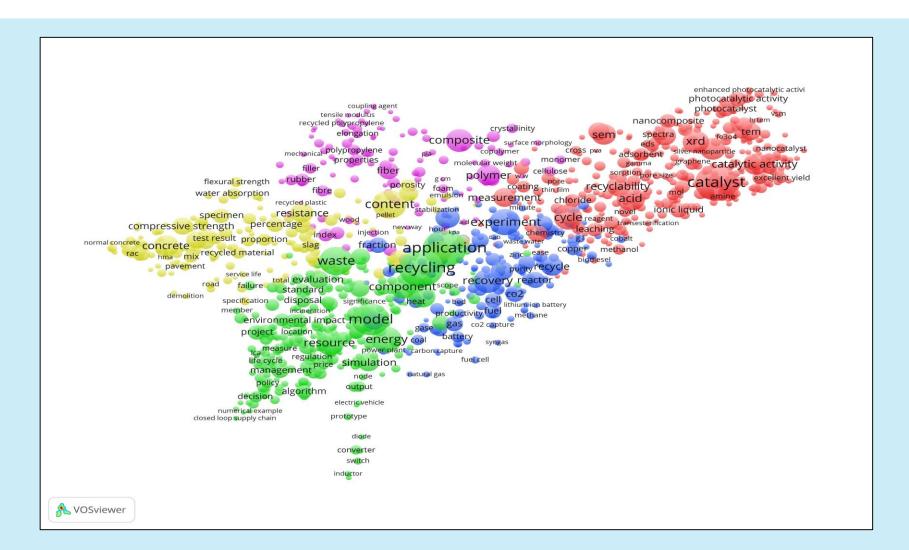

Fördermöglichkeiten in Bezug auf das Ziel "low carbon"

Zukunftsbezüge und regionale Bezüge

Energie- und Ressourceneinsparung; Klimaschutz

Bezug zum Ruhrgebiet traditionell sehr hoch; Bezüge auch bei Zement gegeben u.a. mit Konzentration von Zementwerken östlich des Ruhrgebiets

3. Thema: Zirkuläre Wertschöpfung und Ressourceneffizienz Dynamik und internationale Positionierung



3. Thema: Zirkuläre Wertschöpfung und Ressourceneffizienz Positionierung und Passfähigkeit MC

		Publikati	onen		Impact	
Rang		Summe	MC	Anteil MC	Zitationen	Zitrate
1	Karlsruher Institut für Technologie	64	0	0%	328	5,13
2	Technische Universität Dortmund	49	11	22%	363	7,41
3	Rheinisch-Westfälische Technische Hochschule Aachen	48	0	0%	321	6,69
4	Technische Universität Berlin	39	0	0%	280	7,18
5	Max-Planck-Institut für Plasmaphysik (IPP)	34	0	0%	176	5,18
6	Technische Universität München	34	0	0%	383	11,26
7	Friedrich-Alexander-Universität Erlangen-Nürnberg	32	1	3%	397	12,41
8	Universität Stuttgart	28	0	0%	155	5,54
9	Technische Universität Carolo-Wilhelmina zu Braunschweig	28	0	0%	463	16,54
10	Forschungszentrum Jülich GmbH (FZJ)	24	0	0%	207	8,63
11	Technische Universität Darmstadt	20	0	0%	143	7,15
12	Technische Universität Dresden	18	0	0%	126	7,00
13	Technische Universität Bergakademie Freiberg	15	0	0%	41	2,73
14	Ruhr-Universität Bochum	15	3	20%	83	5,53
27	Universität Duisburg-Essen	9	7	78%	11	1,22
11	Materials Chain	23	23	100%	209	9,09

3. Thema: Zirkuläre Wertschöpfung und Ressourceneffizienz Teilthemen

Technologiezentrum

3. Thema: Zirkuläre Wertschöpfung und Ressourceneffizienz Teilthemen - Zukunftsbezüge

- Regeneration komplexer Investitionsgüter → in einem virtuellen Vorgang: für alle Regenerationspfade produktionstechnischen Aufwand und funktionalen Nutzen bewerten; regelbasierte Entscheidung für effizientesten Regenerationspfad ableiten; Kundengeschäftsmodells berücksichtigen
- Bauteile wie: Zahnräder, Wälz- und Gleitlager, Führungen, Kolbenring/Zylinder-Paarung, Nocken/Stößel-Paarungen → geringer Energieverbrauch, lange Lebensdauer durch Verschleißminimierung, geringer Ressourceneinsatz
- Reduzierung von anorganischen nichtmetallischen Einschlüssen in der Metallmatrix beim Einsatz intelligenter Filterwerkstoffe bzw. Filtersysteme → Die Vision des SFB 920: Einstellung exzellenter, an die Bauteilbeanspruchung angepasster funktionaler und adaptiver mechanischer Eigenschaften → für einen Innovationsschub in Sicherheits- und Leichtbaukonstruktionen

3. Thema: Zirkuläre Wertschöpfung und Ressourceneffizienz Passfähigkeit – Förderprogramme

Relevant Virtual Focus Areas:

CE: Circular Economy

LC: Low Carbon

CE-NMBP-24-2018: Catalytic transformation of hydrocarbons (RIA)

CE-NMBP-25-2019: Photocatalytic synthesis (RIA)

- CE-NMBP-26-2018: Smart plastic materials with intrinsic recycling properties by design (RIA)
- CE-SPIRE-02-2018: Processing of material feedstock using non-conventional energy sources (IA); CE-SPIRE-05-2019: Adaptation to variable feedstock through retrofitting (IA 50%); CE-SPIRE-07-2020: Recovery of industrial water, thermal energy and substances contained therein (IA); CE-SPIRE-08-2020: Improved Industrial Processing using novel high-temperature resistant materials (RIA); CE-SPIRE-09-2020: Making the most of mineral waste, by-products and recycled material as feed for high volume production (IA); CE-SPIRE-10-2018: Efficient recycling processes for plastic containing materials (IA)

3. Thema: Zirkuläre Wertschöpfung und Ressourceneffizienz Passfähigkeit – Förderprogramme - FET

- FET FETPROACT-01-2018: u. a.
 - Socially interactive technologies → Rolle der Bürger in der zirkulären Wertschöpfung?
 - Disruptive micro-energy and storage technologies → Autarke Sensoren in jedem Sammelbehälter, autarke Sensoren/Aktoren in Bauteilen?

Technologiezentrum

3. Thema: Zirkuläre Wertschöpfung (ZW) und Ressourceneffizienz Top-Down – Bezüge zu technologischen Megatrends

- 1. Digitale Transformation → Informationen als Schlüssel der ZW bei Bauteilen und Logistik
- FML (Schwerpunkt Logistik in Dortmund) "The Metallurgical Internet of Things"
- 2. Neue Paradigmen der Elektronik → Labelling mit RFID, druckbarer Elektronik Was kommt danach mit höherer Speicherdichte?
- 3. Künstliche Intelligenz und 4. Robotik → Anwendung in der Sortiertechnik Schnittstelle im Material angelegt
- 5. Industrie 4.0 → Verwaltungsschale als Schlüssel zur Wiederverwertung
- 6. 3D-Druck → Materialien, die unmittelbar im 3D-Drucker wiederverwendet werden
- Autonomes Fahren → autonome Logistik in der ZW
- 8. Nanosysteme → hochdichte Speicher im Material
- 9. Synthetische Biologie → quasi-biologische Aufspaltung von Stoffgemischen
- 10. Genomik/Proteomik/Metabolomik → Biologisierung Bauplan des Ganzen in jedem Bauteil (wie die DNA in jeder Zelle eines Organismus)

3. Thema: Zirkuläre Wertschöpfung und Ressourceneffizienz Top-Down – Bezüge zu gesellschaftlichen Herausforderungen

- 1. Ernährung
- 2. Gesundes Leben
- 3. Demographischer Wandel
- 4. Wasser und Sanitärversorgung → Schließung von Wasserkreisläufen
- 5. Erneuerbare Energieversorgung → für ZW, thermodynamische Grenzen
- 6. Nachhaltiges Wirtschaften, Produzieren und Konsumieren → Bezug ist offensichtlich
- 7. Widerstandsfähige Infrastruktur
- 8. Städte (Urbanisierung, Sicherheit, Mobilität) → Abfallwirtschaft in Megastädten
- 9. Klimawandel → Bezug ist offensichtlich
- 10. Ozeane und Landökosysteme schützen → Vision "zero waste", es gibt keinen Abfall in der Natur

Fazit zu Thema 3. Zirkuläre Wertschöpfung und Ressourceneffizienz

Dynamik und internationale Positionierung

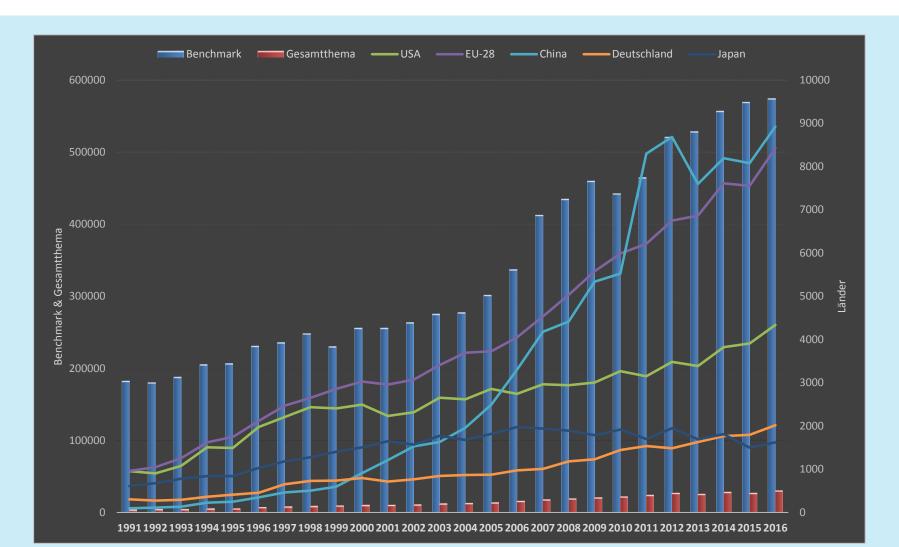
Wachstum durchgehend über dem Benchmark bei insgesamt überraschend niedrigen Publikationszahlen, Deutschland nach Zahl der Publikationen an Platz 4

Positionierung und Passfähigkeit MC

MC nach Zitationsrate in den Top-5 in Deutschland; aufgrund der insgesamt überschaubaren Publikationszahlen, besteht gutes Potential eine Spitzenposition zu erreichen

Passfähigkeit – Förderprogramme

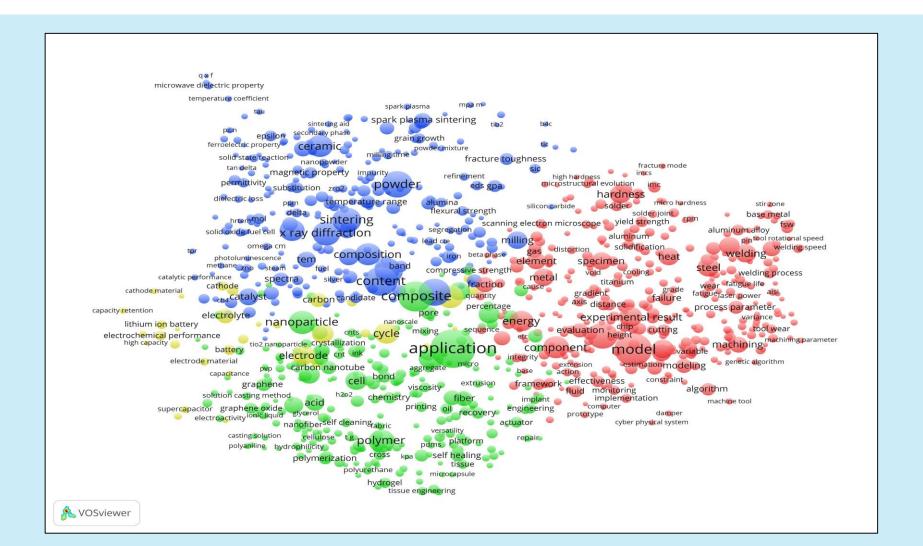
Thema steht hoch auf der politischen EU-Agenda; es gibt eine eigene Virtual Focus Area "Circular Economy"


Zukunftsbezüge und regionale Bezüge

Energie- und Ressourceneinsparung; Klimaschutz stehen im Vordergrund; es gibt Bezüge zu fast allen technologischen Megatrends zur Realisierung der zirkulären Wertschöpfung

Thoma kann Zukunftsparspaktive für das ganze Buhrgebiet bieten: Vision - Aufbau mederner

Thema kann Zukunftsperspektive für das ganze Ruhrgebiet bieten: Vision – Aufbau moderner vernetzter, zirkulärer Wertschöpfungsnetze analog dem traditionellen Montankomplex; Querbezug zum Thema 2, weil Stahl seit langem sehr hohe Recyclingquoten aufweist


4. Thema: Materialforschung für die Produktion der Zukunft Dynamik und internationale Positionierung

4. Thema: Materialforschung für die Produktion der Zukunft Positionierung und Passfähigkeit MC

		Publikation	nen		Imp	act
Rang		Summe	MC	Anteil MC	Zitationen	ZitRate
1	Karlsruher Institut für Technologie	758	10	1%	5368	7,08
2	Rheinisch-Westfälische Technische Hochschule Aachen	450	6	1%	3123	6,94
3	Technische Universität Dresden	374	5	1%	3050	8,16
4	Friedrich-Alexander-Universität Erlangen-Nürnberg	329	8	2%	2236	6,80
5	Helmholtz-Zentrum Geesthacht Zentrum für Materialforschung und Küstenforschung	257	6	2%	2456	9,56
6	Gottfried Wilhelm Leibniz Universität Hannover	240	10	4%	1376	5,73
7	Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden	215	9	4%	2669	12,41
8	Technische Universität Darmstadt	211	9	4%	2239	10,61
9	Technische Universität München	206	14	7%	1443	7,00
10	Ruhr-Universität Bochum	200	148	74%	1745	8,73
11	Bundesanstalt für Materialforschung und -prüfung	199	3	2%	1210	6,08
12	Technische Universität Bergakademie Freiberg	177	5	3%	838	4,73
13	Universität Stuttgart	169	1	1%	706	4,18
14	Universität Duisburg-Essen	160	114	71%	1341	8,38
15	Technische Universität Dortmund	155	128	83%	1132	7,30
3	Materials Chain	436	436	100%	3788	8,69

4. Thema: Materialforschung für die Produktion der Zukunft Teilthemen

Technologiezentrum

4. Thema: Materialforschung für die Produktion der Zukunft Teilthemen - Zukunftsbezüge

- Anpassungsintelligenz von Fabriken → umfassende Betrachtung von der Analyse-, Bewertungs-, Maßnahmen- und Entscheidungs- bis zur Umsetzungsphase
- betreibt Grundlagenforschung, um das Potenzial additiver Fertigungsverfahren in Richtung multifunktionaler Bauteile auszubauen → Innovationen realisieren, Produkte individualisieren
- Erforschung und Entwicklung neuer Produktionstechniken, die Bauteile befähigen, inhärent Informationen über sich und ihren Lebenszyklus aufzunehmen und inhärent zu speichern → denkende Fabrik, smarte Produkte: Bauteile und Werkzeuge fühlen und kommunizieren ihre Zustände; Begriff: "gentelligente Bauteile"
- "Self-healing materials" → elucidate fundamental cross-disciplinary, material-independent principles and design strategies → apply to new approaches in the different material classes; new generation of adaptive high-performance materials → for various applications in technology and medicine.
- Umformtechnik → in Zukunft auf den Einsatz von Schmierstoffen verzichten können
- schmelzebasierte Fertigungstechnologien → Präzision um mindestens eine Größenordnung steigern

4. Thema: Materialforschung für die Produktion der Zukunft Passfähigkeit – Förderprogramme

- DT-NMBP-12-2019: Sustainable Nano-Fabrication (CSA)
- Teilweise im Rahmen von "Factories of the Future"
 - DT-FOF-04-2018: Pilot lines for metal Additive Manufacturing (IA 50%)
 - DT-NMBP-18-2019: Materials, manufacturing processes and devices for organic and large area electronics (IA)
 - DT-NMBP-19-2019: Advanced materials for additive manufacturing (IA)

Ggf. relevant:

- DT-FOF-03-2018: Innovative manufacturing of opto-electrical parts (RIA)
- DT-FOF-07-2020: Reliable and accurate assembly of micro parts (RIA)
- DT-FOF-10-2020: Pilot lines for large-part high-precision manufacturing (IA 50%)
- DT-FOF-11-2020: Quality control in smart manufacturing (IA)
- DT-FOF-12-2019: Handling systems for flexible materials (RIA)

4. Thema: Materialforschung für die Produktion der Zukunft Top-Down – Bezüge zu technologischen Megatrends

- 1. Digitale Transformation → Bezug ist offensichtlich
- 2. Neue Paradigmen der Elektronik → für eingebettete Systeme in Materialien
- 3. Künstliche Intelligenz → Kognitive Laser-Maschinentechnik
- 4. Robotik → Bezug ist offensichtlich
- 5. Industrie 4.0 → Bezug ist offensichtlich
- 6. 3D-Druck → Bezug ist offensichtlich
- 7. Elektromobilität und autonomes Fahren
- 8. Nanosysteme → in Maschinen und Materialien
- 9. Synthetische Biologie
- 10. Genomik/Proteomik/Metabolomik

Technologiezentrum

4. Thema: Materialforschung für die Produktion der Zukunft Top-Down – Bezüge zu gesellschaftlichen Herausforderungen

- 1. Ernährung
- Gesundes Leben
- 3. Demographischer Wandel → Industrieproduktion in einer alternden Gesellschaft
- 4. Wasser und Sanitärversorgung
- 5. Erneuerbare Energieversorgung → Energieeffizienz in der Produktion
- Nachhaltiges Wirtschaften, <u>Produzieren</u> und Konsumieren → <u>Bezug ist</u>
 offensichtlich
- 7. Widerstandsfähige Infrastruktur
- 8. Städte (Urbanisierung, Sicherheit, Mobilität)
- 9. Klimawandel
- 10. Ozeane und Landökosysteme schützen

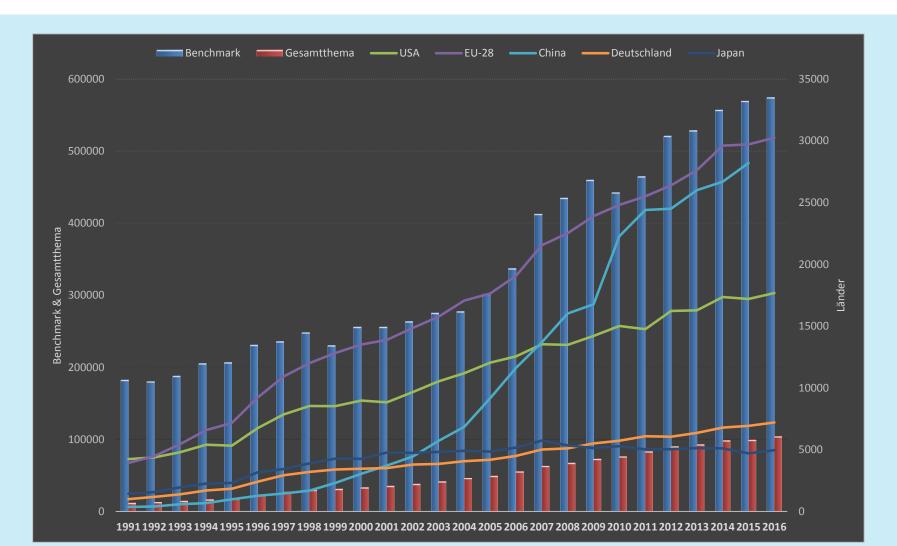
Fazit zu Thema 4. Materialforschung für die Produktion der Zukunft

Dynamik und internationale Positionierung

Wachstum durchgehend über dem Benchmark, Deutschland nach Zahl der Publikationen an Platz 4

Positionierung und Passfähigkeit MC

MC nach Publikationszahlen unter den Top-3 in Deutschland – in dieser Gruppe mit der höchsten Zitationsrate

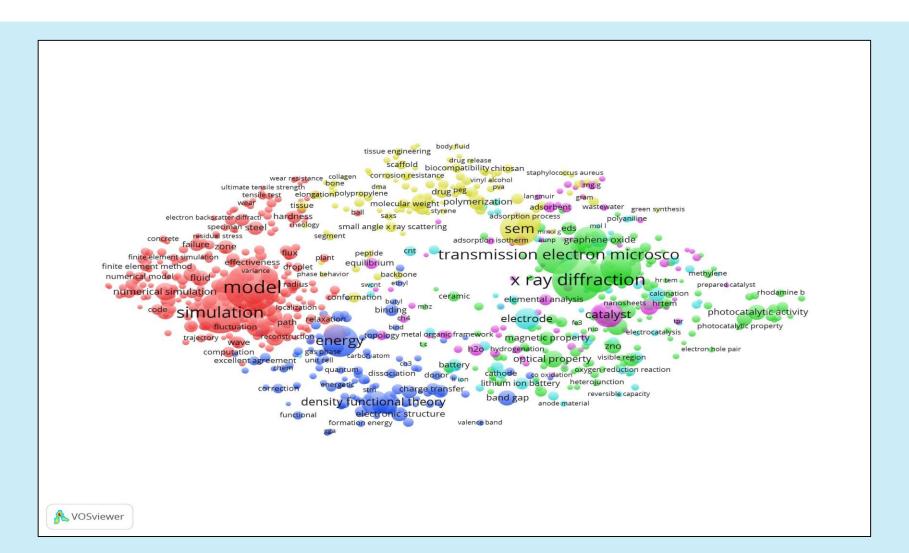

Passfähigkeit – Förderprogramme

Das Thema Industrie 4.0 steht hoch auf der politischen Agenda in Deutschland; allerdings ist dabei der Materialbezug nicht im Fokus, gute EU-Fördermöglichkeiten

Zukunftsbezüge und regionale Bezüge

Industrie 4.0 ist selbst ein technologischer Megatrend sehr gute Passfähigkeit zur Philosophie der MC mit dem Slogan "Vom Atom zum Bauteil" und zum Ruhrgebiet als Industriestandort

5. Thema: Quantification and Prediction in Materials Design Dynamik und internationale Positionierung



5. Thema: Quantification and Prediction in Materials Design Positionierung und Passfähigkeit MC

		Publikationen			Imp	act
Rang	Name	Summe	MC	Anteil MC	Zitationen	ZitRate
1	Karlsruher Institut für Technologie	3684	90	2%	33984	9,22
2	Rheinisch-Westfälische Technische Hochschule Aachen	1513	68	4%	12732	8,42
3	Technische Universität Dresden	1263	17	1%	10839	8,58
4	Technische Universität München	1261	20	2%	13038	10,34
5	Forschungszentrum Jülich GmbH (FZJ)	1228	82	7%	12463	10,15
6	Friedrich-Alexander-Universität Erlangen-Nürnberg	1068	19	2%	10241	9,59
7	Technische Universität Darmstadt	972	14	1%	8286	8,52
8	Helmholtz-Zentrum Berlin für Materialien und Energie	890	20	2%	9186	10,32
9	Universität Stuttgart	870	6	1%	6250	7,18
10	Ruhr-Universität Bochum	823	431	52%	7340	8,92
11	Technische Universität Berlin	720	17	2%	6718	9,33
12	Deutsches Elektronen-Synchrotron	678	15	2%	6084	8,97
13	Friedrich-Schiller-Universität Jena	568	12	2%	5164	9,09
14	Universität Duisburg-Essen	560	416	74%	4805	8,58
36	Technische Universität Dortmund	392	249	64%	2859	7,29
3	Materials Chain	1436	1436	100%	14394	10,02

5. Thema: Quantification and Prediction in Materials Design Teilthemen

Technologiezentrum

5. Thema: Quantification and Prediction in Materials Design Teilthemen - Zukunftsbezüge

- Multiskalen-Simulationsmethoden für Systeme der weichen Materie → Simulationen von "realen Systemen"; bestimmt von komplexen Gleichgewichtsund Nichtgleichgewichts-Prozessen in komplexen (weichen) Materialien
- Complex processes involving cascades of scales → making sizeable progress on challenging applications; laying generalizeable methodological foundations
- quantum mechanical materials modelling with applications to the highly topical subjects of 2d materials and oxide interfaces → fundamental electronic, optical and chemical material properties → solve material related problems in the context of information, energy and environmental technologies
- Multiskalige Materialssysteme → "quasi am Reißbrett" makroskopische, multiskalig strukturierte Werkstoffe und Bauteile entwickeln → mit maßgeschneiderten mechanischen, elektrischen oder photonischen Eigenschaften; zusammengesetzt aus einzelnen Bausteinen unterschiedlicher diskreter Längenskalen → ganz gezielt Bausteine austauschen und die Eigenschaften der Materialsysteme diskontinuierlich verändern; wenn es gelingt → völlig neuartige Materialfunktionen

5. Thema: Quantification and Prediction in Materials Design Passfähigkeit – Förderprogramme

- DT-NMBP-07-2018: Open Innovation Test Beds for <u>Characterisation</u> (IA)
- DT-NMBP-08-2019: Real-time <u>nano-characterisation</u> technologies (RIA)
- DT-NMBP-09-2018: Accelerating the uptake of <u>materials modelling software</u> (IA)
- DT-NMBP-10-2019: Adopting <u>materials modelling</u> in manufacturing processes (RIA)
- DT-NMBP-11-2020: Open Innovation Test Beds for Materials Modelling (IA)
- NMBP-14-2018: Nanoinformatics: from materials models to <u>predictive</u> toxicology and ecotoxicology
- FET FETHPC-01-2018: International Cooperation on HPC
- FET FETHPC-02-2019: Extreme scale computing technologies, methods and algorithms for key applications and support to the HPC ecosystem

5. Thema: Quantification and Prediction in Materials Design Top-Down – Bezüge zu technologischen Megatrends

- 1. Digitale Transformation
- 2. Neue Paradigmen der Elektronik
- 3. Künstliche Intelligenz
- 4. Robotik
- Industrie 4.0
- 6. 3D-Druck
- 7. Elektromobilität und autonomes Fahren
- 8. Nanosysteme
- 9. Synthetische Biologie
- 10. Genomik/Proteomik/Metabolomik

Enabler für alle Materialaspekte im Zusammenhang mit den technologischen Megatrends

5. Thema: Quantification and Prediction in Materials Design Top-Down – Bezüge zu gesellschaftlichen Herausforderungen

- Ernährung
- Gesundes Leben
- 3. Demographischer Wandel
- 4. Wasser und Sanitärversorgung
- 5. Erneuerbare Energieversorgung
- 6. Nachhaltige Wirtschaft, Prod. u. Konsum.
- 7. Widerstandsfähige Infrastruktur
- 8. Städte (Urbanisierung, Sicherheit, Mobilität)
- Klimawandel
- 10. Ozeane und Landökosysteme schützen

Enabler für alle Materialaspekte im Zusammenhang mit den gesellschaftlichen Herausforderung

Fazit zu Thema 5. Quantification and Prediction in Materials Design

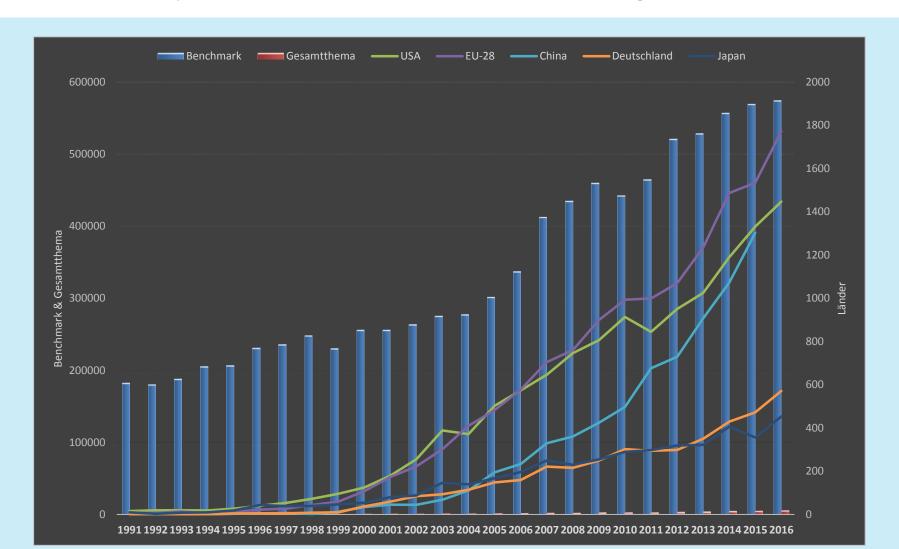
Dynamik und internationale Positionierung

Deutlich schnelleres Wachstum als der Benchmark – seit etwa 2011 Sättigung auf einem hohen Niveau von ca. 18% am Benchmark, Deutschland nach Zahl der Publikationen an Platz 4

Positionierung und Passfähigkeit MC

MC nach Publikationszahlen unter den Top-3 in Deutschland – in dieser Gruppe mit der höchsten Zitationsrate

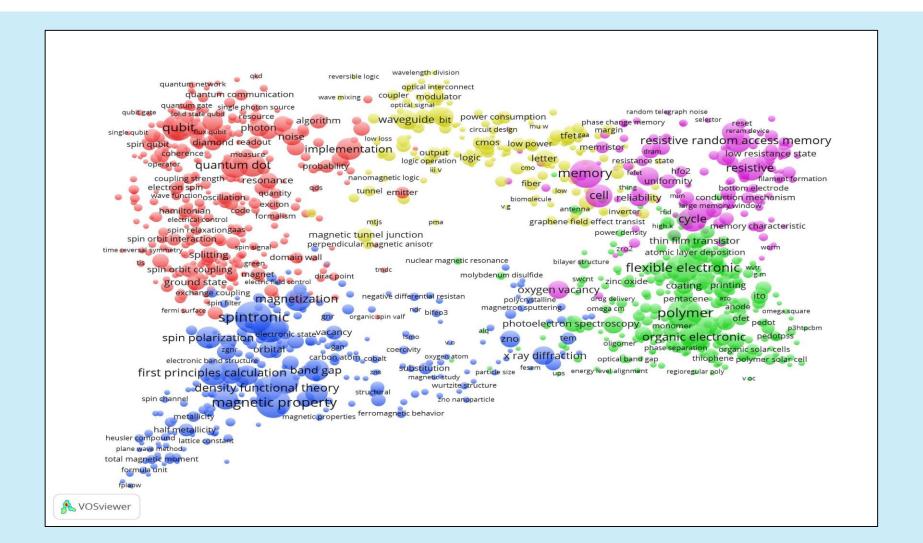
Passfähigkeit – Förderprogramme


gute EU-Fördermöglichkeiten

Zukunftsbezüge und regionale Bezüge

In vielen DFG-Projektverbünden zu vielen unterschiedlichen Themen wird das Wechselspiel aus Charakterisierung und (skalenübergreifender) Simulation bereits als *die* Herangehensweise in der Materialforschung begriffen und umgesetzt. Insofern stellt sich die Frage, bei welchen Themen für die MC inhaltliche Schwerpunkte gesetzt werden sollen.

6. Thema: Materials for novel electronics Dynamik und internationale Positionierung

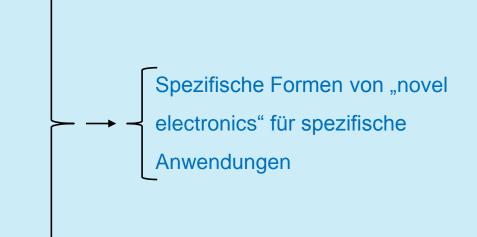


6. Thema: Materials for novel electronics Positionierung und Passfähigkeit MC

		Publikatio	nen		Impact	
Rang		Summe	MC	Anteil MC	Zitationen	ZitRate
1	Karlsruher Institut für Technologie	270	16	6%	3364	12,46
2	Forschungszentrum Jülich GmbH (FZJ)	147	10	7%	1738	11,82
3	Jülich Aachen Research Alliance	128	7	5%	1455	11,37
4	Technische Universität Dresden	110	0	0%	1345	12,23
5	Rheinisch-Westfälische Technische Hochschule Aachen	110	4	4%	1263	11,48
6	Technische Universität München	94	1	1%	1164	12,38
7	Universität Regensburg	63	0	0%	800	12,70
8	Ruhr-Universität Bochum	63	34	54%	530	8,41
9	Johannes Gutenberg-Universität Mainz	59	0	0%	847	14,36
10	Universität Stuttgart	52	1	2%	1018	19,58
11	Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden	49	0	0%	343	7,00
12	Technische Universität Darmstadt	48	1	2%	502	10,46
13	Julius-Maximilians-Universität Würzburg	47	3	6%	833	17,72
14	Friedrich-Alexander-Universität Erlangen-Nürnberg	45	0	0%	858	19,07
18	Universität Duisburg-Essen	40	33	83%	344	8,60
44	Technische Universität Dortmund	18	3	17%	201	11,17
7	Materials Chain	72	72	100%	556	7,72

6. Thema: Materials for novel electronics Teilthemen

6. Thema: Materials for novel electronics Teilthemen - Zukunftsbezüge


- CMOS technology → CMOS scaling projected to end soon after 2020; unique opportunity to integrate discoveries on new materials and technological innovations; potential for advancing electronic information processing beyond 2020; augmented CMOS: heterogeneous architectures to form highly efficient information processing environments
- resistive switching phenomena exists in oxides and higher chalcogenides in which the change of atomic configurations including atomic and ionic defects represents the essential functionality → understand and explore the potential of advanced nanoswitches based on such configuration changes
- TOLAE (thin film organic and large area electronics) technologies → a totally novel and promising research area: Wireless communication systems fully integrated on ultra-thin, bendable and flexible substrates such as plastic or even paper
- collective interactions in large systems: emergent spin phenomena → the extension of spin physics into the terra incognita of emergent spin phenomena, with the intermediate and long-term goal of practical applications
- Spinphänomene in reduzierten Dimensionen → effiziente Injektion, Manipulation und Detektion von Spins in dimensionsreduzierten Systemen; Bereitstellung der Schlüsselelemente einer zukünftigen Raumtemperatur-Spintronik
- Entangled states of matter → work towards ... solid state quantum information devices

6. Thema: Materials for novel electronics Passfähigkeit – Förderprogramme

- FET FETPROACT-01-2018:
 - Topological matter (u. a.)
- FET FETPROACT-02-2018: Coordination and Support Action
 - Community building in Neuromorphic Computing Technologies

6. Thema: Materials for novel electronics Top-Down – Bezüge zu technologischen Megatrends

- 1. Digitale Transformation
- 2. Neue Paradigmen der Elektronik
 - → Bezug ist offensichtlich
- 3. Künstliche Intelligenz
- 4. Robotik
- Industrie 4.0
- 6. 3D-Druck
- 7. Elektromobilität und autonomes Fahren
- 8. Nanosysteme → für "novel electronics", autonomous nano-robots
- 9. Synthetische Biologie → computing with artificial DNA
- 10. Genomik/Proteomik/Metabolomik → DNA-computing

6. Thema: Materials for novel electronics Top-Down – Bezüge zu gesellschaftlichen Herausforderungen

- 1. Ernährung
- 2. Gesundes Leben
- 3. Demographischer Wandel
- 4. Wasser und Sanitärversorgung
- 5. Erneuerbare Energieversorgung
- 6. Nachhaltige Wirtschaft, Prod. u. Konsum.
- 7. Widerstandsfähige Infrastruktur
- 8. Städte (Urbanisierung, Sicherheit, Mobilität)
- Klimawandel
- 10. Ozeane und Landökosysteme schützen

"novel electronics" als Enabler für die digitale Transformation in allen Lebensbereichen

Fazit zu Thema 6. Materials for novel electronics

Dynamik und internationale Positionierung

Deutlich schnelleres Wachstum als der Benchmark anhaltend bis 2016 bei insgesamt moderaten Publikationszahlen

Positionierung und Passfähigkeit MC

MC nach Publikationszahlen unter den Top-10 in Deutschland mit vergleichsweise niedriger Zitationsrate. Von allen sechs Themen ist der Anteil an Kooperationen zwischen den drei Universitäten bei diesem Thema mit 7,6 % am höchsten

<u>Passfähigkeit – Förderprogramme</u>

Fördermöglichkeiten bei FET

Zukunftsbezüge und regionale Bezüge

"novel electronics" als Enabler für die digitale Transformation in allen Lebensbereichen – insofern sehr ausgeprägter Zukunftsbezug. Regionaler Bezug durch Anwender möglich

Fazit: 6 Themen im Vergleich

	Rang MC P	Rang MC ZR	Bo-Do-Du/E	MC Koop.	Anteil Koop.
Thema 1: Surface, Interface, Nano	5	23	1306	47	3,6%
Thema 2: Stahl, Beton, Zement	3	1 und 2	232	7	3,0%
Thema 3: Zirkuläre Wertschöpfung	11	4	20	1	5,0%
Thema 4: Produktion der Zukunft	3	13	376	14	3,7%
Thema 5: Quantification and Prediction	3	23	1062	36	3,4%
Thema 6: Novel Electronics	7	50	66	5	7,6%

^{*}MC Kooperation = Wenn mind. zwei der drei Unis (Bochum, Dortmund, Duisburg/Essen) beteiligt sind

Kurzfazit zu jedem der 6 Themen in der Übersicht

1. Surfaces and Interfaces (incl. Nano)

Größter MC-Output, Querschnittscharakter möglich, regionalen Bezug durch Anwenderbranchen herstellen, geringe Dynamik

2. Nano-2-Giga: Stahl, Beton & Zement

Höchster Impact, passt zur Region, große gesellschaftliche Relevanz, MC-Koop. ausbauen, virtual focus area – low carbon

3. Zirkuläre Wertschöpfung und Ressourceneffizienz

Geringster Output – hohes Potential, #2 beim MC-Impact, große gesellschaftliche Relevanz, neuer Montankomplex möglich, Bezug zu High-Tech-Themen möglich, #2 bei MC-Koop. (nur 1 Publikation → lässt sich leicht ausbauen), politischer Wille

4. Materialforschung für die Produktion der Zukunft

MC beim Output mit führend, höchster Impact unter den Top 3 beim Output, technologischer Megatrend, Bezug zur Region als Industriestandort, politische Dynamik – Materialbezug nicht im Fokus

5. Quantification and Prediction in Materials Design

#2 beim MC-Output, MC beim Output mit führend, Querschnittscharakter möglich, wo die Schwerpunkte setzen, Förderung

6. Materials for novel electronics

Niedriger Output – hohes Potential, Impact mit Luft nach oben, technologischer Megatrend, regionalen Bezug durch Anwenderbranchen herstellen, #1 bei MC-Koop., FET-Thema

Fazit aus bibliometrischer Sicht - Handlungsempfehlungen

- Anteil gemeinsamer MC-Publikationen zwischen den Einrichtungen ist sehr gering. Im Mittel der sechs untersuchten Themen nur etwa 4,5 % der Publikationen.
 - Die Zusammenarbeit zwischen den Einrichtungen erhöhen, mehr gemeinsam veröffentlichen.
 - Eine einheitliche Affiliation wie z. B. "UA Ruhr, Materials Chain" einführen.
- Der Impact ist in einigen Themen verbesserungsfähig.
- Internationale Partner haben in der Wissenschaft einen hohen Stellenwert Überdenken der Internationalisierungsstrategie

Gesamtfazit

Zirkuläre Wertschöpfung und Ressourceneffizienz

Das Thema "Zirkuläre Wertschöpfung und Ressourceneffizienz" erscheint insgesamt die größten Potenziale aufzuweisen, als neues Schwerpunktund Leuchtturmthema für die MC zu fungieren.

→ Empfehlung: als Vertiefungsthema in den Modulen 3 bis 5 bearbeiten.

Falls gewünscht – "Out-of-the-Box"-Teilthema

■ Surfaces and Interfaces → Mikroorganismen auf techn. Oberflächen